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1. INTRODUCTION

Nanoparticles have been a major area of interest for researchers for the 
past few decades and have revolutionized the world of nanotechnology 
due to their small sizes and high surface area to volume ratio [1]. However, 
there is much that remains undeciphered. Richard Feynman used the word 
“nanoparticles” for the 1st time in 1959 and laid the foundation of modern 
nanotechnology [2]. Production of nanoparticles involves manipulation at 
atomic levels involving chemical, biological, and engineering approaches 
to fabricate new materials of smaller size and has better properties as 
compared to the bulk materials. Transition to nanotechnology involves the 
increase in the surface atoms due to size reduction which results different 
characteristic of nanoparticles. There are innumerable application areas of 
nanoparticles ranging from catalysis [3], biomedical [4], electronics [5], 
imaging agents [6], and adsorbents [7] to food processing [8]. Application 
of nanoparticles is influenced by the factors such as precursors, temperature 
of the reaction, particle size, preparation pathway, cytotoxicity of the 
prepared nanoparticles, and side products.

Iron oxide is a common occurring natural mineral oxide found in 
nature. Preparation of homogenous iron oxide nanoparticles (IONPs) 
has grabbed much focus in recent era due to the simple preparation, 
better magnetic, and electrical properties. Iron oxide exists in eight 
forms of which main is hematite (α-Fe2O3), maghemite (γ-Fe2O3), 
and magnetite (Fe3O4) [2]. Hematite is thermodynamically stable 
under ambient conditions, non-toxic, and resistive to corrosion and 
inexpensive. Therefore, can be effectively put to use in environmental 
related applications such waste water treatment. Maghemite and 
magnetite have wide industrial and biomedical applications.

IONPs are also used extensively as they have wide variety of 
applications. IONPs are known for their use in delivery of drugs [9], 
targeting agents [10], ferrofluids in hyperthermia [11], cancer 
therapy  [12], gene therapy [13], cell proliferation [14], wastewater 
treatment [15], tissue engineering [16], photovoltaic devices [17], 
thermal ablation [18], pigments [19], catalysis [20], food related 
applications [21], etc.

Nowadays, scientists have shifted their focus toward developing 
sustainable methods of producing magnetic IONPs having improved 
properties. IONPs are being prepared through chemical methods 
and also through green synthesis. Green synthesis uses plants or 
microorganisms for the synthesis process of nanoparticles and has 
added advantages over the chemical synthesis as it is non-polluting, 
cheap, and non-toxic and requires minimum resources. After 
synthesis of IONPs, they can be functionalized and mounted with 
certain nanoparticles that may improve their pre-existing properties 
and increase their area of application. Therefore, functionalization 
and conjugation of IONPs become a crucial step for their targeted 
application. This review aims to highlight various methods of 
synthesis of IONPs through various methods and their applications to 
have better insight into its uses and thus improve their scope in today’s 
era of nanotechnology.

2. OXIDES OF IRON

The main iron oxides, that is, hematite, maghemite, and magnetite 
exhibit polymorphism which involves temperature induces phase 
transitions. Each oxide of iron has their own unique magnetic, catalytic, 
structural, and biochemical properties which are responsible for their 
use for a particular application. Figure 1 represents crystal structure of 
different forms of iron oxide.
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2.1. Hematite (α-Fe2O3)
It is the most commonly known form of iron oxide and is largely 
distributed in nature mainly in soils and rocks. The other names 
include as red ochre, iron sesquioxide, martite, and kidney ore. It is 
blood red in color in finally divided form and black or grey in granular 
or crystalline form. It can also be converted into maghemite (γ-Fe2O3) 
and magnetite (Fe3O4). The energy band gap value for hematite is 
2.3 eV. Conduction band originates from empty d-orbitals of Fe3+ 
and valence band originated from the mixture of 3d orbitals of Fe3+ 
which is occupied and non-bonding 2p orbitals of O [23]. It is weakly 
ferromagnetic or antiferromagnetic but becomes paramagnetic above 
956 K (Curie temperature). It has corundum type of structure and 
crystallographic systems include rhombohedral. Fe3+ ions occupy 
two third of interstitial sites, while the O2- is arranged in close packed 
hexagonal crystallographic system [24]. It has density of 5.26 g/cm3 
and melting point of 1350°C.

2.2. Maghemite (γ- Fe2O3)
It is ferrimagnetic in nature and is a cubic system with defected spinel 
structure as vacancies are present in cationic sublattice. Fe3+ ions 
occupy tetrahedral sites and octahedral sites, while the oxygen anions 
form cubic closed packed array. Two-third of the sites are occupied 
by Fe3+ ions and one vacant site follows two filled sites. Its Curie 
temperature is 820-986 K and is n-type semiconductor. It is full oxidized 
form of magnetite. Maghemite is thermally unstable and transforms to 
hematite at higher range of temperature. It has a density of 4.87 g/cm3. 
Furthermore, it is easily magnetized in presence of external magnetic 
field. Energy band gap value for maghemite is 2.0 eV.

2.3. Magnetite (Fe3O4)
It is ferromagnetic in nature and is a face centered cubic system with 
inverse spinel structure with stacking plan as in polyhedral model. It 
has 32 O2- ions per unit cell and Fe2+ ions occupy half of octahedral sites 
and Fe3+ ions randomly distributed between tetrahedral and octahedral 
sites. Its Curie temperature is 850 K. The density of this type of oxide 
is 5.18 g/cm3 and melting point lies in range of 1583-1597 K. It can 
behave as both p and n-type semiconductor as the divalent iron atoms 
can easily be replaced by Co2+, Mn2+, Zn2+, and other divalent ions and 
has band gap of 0.1 eV.

2.4. β- Fe2O3 and ε- Fe2O3

β- Fe2O3 has body centered cubic structure and is a rare iron oxide. It 
is anti-ferromagnetic nature and is thermodynamically unstable and is 
converted into either hematite or maghemite. The Fe3+ ions in occupy 
β- Fe2O3 the octahedral sites.

The ε- Fe2O3 form is a cubic system with orthorhombic crystal structure. 
It is a polymorphous intermediate posing structural similarity to both 
hematite and maghemite.

3. SYNTHESIS METHODS OF IONPS

IONPs can be synthesized by variety of ways such as coprecipitation, 
sol–gel synthesis, microwave irradiation, electrochemical methods, flow 
injection synthesis, spray or laser synthesis, thermal decomposition, 
microemulsion, ultrasound irradiation, and biosynthesis and are 
represented in Figure 2. The major problem that is encountered during 
the synthesis of nanoparticles is control over size, shape, porosity, 
polydispersity, morphology of nanoparticles, and reproducibility of 
method used for its synthesis.

3.1. Coprecipitation
This is the classical technique that is most commonly used for the 
synthesis of IONPs mainly γ- Fe2O3 and Fe3O4. Its advantages include 
simplicity, large batch synthesis, and efficiency for the production of 
IONPs. In this method, a stoichiometric mixture of Ferric and Ferrous 
ion is used in molar 2:1 in absence of any oxidizing agent. To this 
mixture, aqueous solution of sodium and ammonium hydroxide is 
added to maintain pH between 8 and 14 which leads to precipitation 
of Fe3O4 which can transform into γ- Fe2O3 in presence of oxygen. The 
chemical reactions for the process can be represented as below [25]:

Fe2++2Fe3++8OH−→Fe3 O4↓+4H2O

Fe3 O4+2H+→γFe2 O3+Fe2++H2O

The above transformation of magnetite to γ-Fe2O3 can also take place 
as a result of electron transfer reaction occurring in the suspension of 
nanoparticles depending on its pH. During oxidation, the migration 
of Fe2+ ions occur creating cationic vacancies in lattice framework 
to maintain balance of charges which also explain the defected spinel 

Figure 1: Crystal structure of the different forms of iron oxide (yellow globule: Fe2+/Fe3+. Red globule: Fe3+) [22].
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structure of γ- Fe2O3. As only kinetic factors control the growth crystal, 
the control over size is limited.

The coprecipitation involves two stages, first nucleation occurs when 
the concentration of species reaches the super-saturation stage and 
then nuclei grow slowly by solute diffusion to the surface of formed 
crystal [26]. The size, magnetic characteristics, and surface properties 
of the nanoparticles can be tailored by adjusting pH, temperature, ionic 
strength, concentration of ferrous and ferric ions, type of ferrous and 
ferric salts, and addition of chelating agents.

Several modified coprecipitation methods have been developed, for 
example, Wu et al. reported magnetic Fe3O4 nanopowder that was 
synthesized by chemical coprecipitation which was ultrasonically 
assisted [27].

3.2. Thermal Decomposition
The coprecipitation technique is kinetically controlled and the rate 
of particle formation is fast. Therefore, the size cannot be controlled. 
Furthermore, the reaction in coprecipitation is carried out at room 
temperature so the nanoparticles have low crystallinity. To tackle 
such situations, alternate methods have been proposed. One such 
method is thermal decomposition which can, further, divided into two 
approaches: Hot-injection approach where the reaction precursors are 
added to hot reaction mixture and conventional approach, in which 
the reaction mixture prepared at room temperature is further heated to 
high temperature in closed or open vessels. The thermal decomposition 
method of synthesis of nanoparticles has the advantage of better size 
control, higher crystallinity, and monodispersity. The method involves 
the decomposition of organometallic or higher coordinated iron 
compounds such as ferric (III) acetylacetonate [28], ferrocene [29], 
iron nitrosophenylhydroxylamine [30,31], iron-urea complex [32], and 
Prussian blue [33] dissolved in organic solvents. Organic molecules 
such as oleic acid, oleylamine, and 1-tetradecene are often added as 
stabilizer to obtain monodispersed IONPs. These stabilizer acts as 
inhibitor to the growth of the nanoparticles by affecting the adsorption 
of additives on the nuclei of growing nanocrystals and, hence, can be 

used to tailor the shape and size of nanoparticles [34]. Recently, Hyeon 
et al. reported synthesis of IONPs from non-toxic iron chloride by 
thermal decomposition method [35].

This method can also be used to obtain different morphologies of 
nanoparticles such as nanocubes and nanospheres, for example, 
Amara et al. carried out thermal decomposition of various mixtures of 
ferrocene and polyvinylpyrrolidone to obtain magnetite nanospheres 
and nanocubes [36]. Chalsani et al. also synthesized cubic and 
spherical morphologies of IONPs from the thermal decomposition of 
FeOOH [37].

3.3. Microemulsion
The concept of microemulsion was introduced by Hoar and Schulman 
and since then it is used for various applications. Microemulsions 
are transparent solution obtained on mixing oil phase with aqueous 
phase with small amount of ionic surfactant generally an alcohol of 
medium chain length [38]. The surfactant forms a layer between the 
oil phase and aqueous phase with the hydrophobic tails projecting into 
the oil phase while the hydrophilic heads projecting into the aqueous 
phase. The concentration of surfactant affects the shape, pore volume, 
surface area, crystallite size, and morphology of nanoparticles. 
A  precipitating agent such as ammonia or tetrabutylammonium 
hydroxide is added to such microemulsions to produce magnetic 
nanoparticles. This method can be used to produce nanoparticles 
with size distribution range 4–15 nm with different methodologies 
and high surface area. Commonly used surfactants include sodium 
dodecyl sulfate, polyvinylpyrrolidone, and cetyltrimethylammonium 
bromide [39-41]. Recently, Okoli et al. synthesized IONPs using w/o 
(water dispersed in oil) and o/w (oil dispersed in water) emulsions 
for protein binding and separation. The specific area of nanoparticles 
produced with w/o microemulsions was 147 m2/g and 304 m2/g for 
o/w microemulsions [42]. Furthermore, Bumajdad produced IONPs 
with surface area of 315 m2/g [43]. Laurent and Mahmoudi also 
encapsulated silica precursor with IONPs to reduce toxicity and 
increase stability of them [12].

3.4. Sol–gel and Polyol Method
It is a classical wet chemical synthesis primarily used for fabrication of 
material. It starts from a colloidal solution of metal oxides or alkoxide 
precursors referred to as “sol” which is then dried to obtained the 
nanoparticles in powder form.

Magnetic IONPs tend to agglomerate and form clusters due to high 
surface energies due to large surface to volume ratio and thus particle 
size increases. Another problem that is encountered in using sol–gel 
process is that the naked IONPs are easily oxidized in air losing their 
magnetic properties. To evade these limitations, the nanoparticles can 
be coated with polymers (polyvinyl alcohol [PVA], polyethylenimine, 
and polymethylmethacrylate), organic molecules (gelatin, chitosan, 
and dextrosan), or inorganic molecules (carbon, silica, and metals such 
as gold and silver). The solvent used in sol–gel method is generally 
water and the hydrolysis of precursors is brought by acid or base. 
Recently, Qi et al. reported the synthesis of magnetite nanoparticles of 
the average diameter 9–12 nm by sol–gel method using non-alkoxide 
precursor [44]. Furthermore, Lemine et al. reported sol–gel method for 
synthesis of Fe3O4 nanoparticles of size 8 nm [45].

The polyol method is inversed sol–gel method and uses reduction 
reaction instead of oxidation reaction used in sol–gel process.  In 
this method, the polyols serve as solvent, reducing agent as well as 
stabilizers to control particle growth and inhibit attraction between 
particles to prevent their aggregation of nanoparticles. Similar to sol–
gel method, the iron precursor is suspended in polyol which is then 

Figure  2: Schematic representation of various methods of 
synthesis of nanoparticles.
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heated and stirred to reach boiling point of polyol. The reaction does not 
require as high temperature and pressure as in hydrothermal methods . 
Cai and Wan reported of Fe3O4 nanoparticles of using ethylene glycol, 
diethylene glycol, triethylene glycol, and tetraethylene glycol of which 
only triethylene glycol resulted in nanoparticles without agglomeration 

[46].

3.5. Flow Injection Synthesis
Alvarez et al. reported synthesis of Fe3O4 nanoparticles by flow 
injection synthesis method. In this, laminar flow of reactants takes 
place in a capillary reactor resulting in continuous or segmented 
mixing of reactants [47].

This method possesses high reproducibility and greater mixing 
homogeneity than other methods of synthesis of nanoparticles and 
also the reaction can be controlled precisely due to specific design of 
reactor for flow injection synthesis. However, the reaction conditions 
are more difficult to setup and require expensive equipment.

3.6. Sonochemical Method or Sonolysis
This method uses ultrasound waves to carry out reactions. This 
method has the advantage that it does not involve high temperature 
and pressure conditions and uses only alternative expansive and 
compressive ultrasound waves which carry out reaction in short time. 
The oscillating bubbles accumulate energy, grow, and then collapse 
releasing energy stored in it to carry out reaction in short period of 
time. This method can be used to prepare bare or functionalized 
nanoparticles. Recently, Theerdhala et al. employed this method to 
obtain L-arginine bonded to Fe3O4 nanoparticles which could be used 
for drug-delivery [48]. Furthermore , Zhu et al. synthesized Fe3O4 
nanoparticles that were dispersed on reduced graphene oxide sheets 
(Fe3O4-RGO) which when immobilized with hemoglobin can be used 
for the detection of hydrogen peroxide [49].

3.7. Microwave Assisted Synthesis
This method uses electromagnetic radiation of microwaves to carry 
out excitation of molecules. The excitation of molecule causes intense 
heating internally, thereby reducing time and energy consumption. 
Sreeja and Joy reported synthesis of γ- Fe2O3 with particle size of 10 nm 
using microwave radiations at 150°C. The reactions occurred fast and 
heating was homogenous [50]. Similarly, Jiang et al. produce IONPs 
with cubic morphology and Hu et al. produced hematite, maghemite, 
and magnetite using microwave assisted methods [51,52].

The microwave-assisted method was also used to synthesize 
biocompatible IONPs such as dextran coated and polyacid 
conjugated IONPs [53,54]. This method has added advantage that the 
nanoparticles prepared can be easily prepared with this method can be 
easily dispersed in water as compared to those prepared with thermal 
decomposition.

3.8. Electrochemical Methods
Electrochemical method of synthesis of IONPs involves adjustment 
of the current density from an electrode generally of iron to tailor 
the particle size. Fe2O3 and Fe3O4 nanoparticles have been prepared 
under oxidizing conditions using electrochemical deposition by Kahn 
et al. [55]. Iron electrode dipped in aqueous solution of dimethyl form 
amide and a surfactant was used for synthesis of γ- Fe2O3 nanoparticles 
by Pascal et al. [56].

3.9. Laser or Spray Methods
These methods have recently gained attention as they allow for higher 
rate of production. In spray methods, solution of salts of Fe(II) and 

Fe(III), along with a reducing agent, is sprayed on reactors, where 
the solvent evaporate leaving behind solute particles which consist of 
particle whose size depends on the initial size of the droplet landed 
on the reactor. Julian-Lopez et al. synthesized hybrid silica-iron oxide 
microspheres through spray drying method [57].

Laser can also be used for heating the gaseous mixture of iron 
precursors to produce small and non-aggregated nanoparticles. Laser 
radiation is used for gas phase synthesis of nanoparticles. IONPs were 
obtained when Fe(CO)5 and ethylene mixture were irradiated with 
laser and air was used as an oxidant [58].

3.10. Biosynthesis
The use of plant and microorganisms for the synthesis of nanoparticles 
has been the most attention seeking topic of the decade as they are 
non-toxic, easy, pollution free, and inexpensive alternative for the 
synthesis of nanoparticles in comparison to other techniques. The 
microbial enzymes in microorganisms and the phytochemicals 
present in the plants are responsible for the reduction and oxidation 
reaction involved in the formation of nanoparticles. IONPs can be 
prepared with the help of sucrose [59], Ficus carica (common fig) 
dried fruit extract [60], aloevera and flaxseed extract [61], Eucalyptus 
globulus [62], Eichhornia crassipes [63], Ruellia tuberosa [64], 
Avicennia marina flower extract [65], Hylocereus undantus [1], and 
many more. Bharde et al. also reported the synthesis of γ-  Fe2O3 
using bacteria Actinobacter sp. and iron (III) chloride under aerobic 
conditions [66]. Recently, Sunadaram et al. also synthesized 
magnetite nanoparticles capped with biomolecules from rhizosphere 
soil bacteria Bacillus subtilis sp. and the process shows applicability 
for bulk synthesis [67].

The advantages and disadvantages of the above-mentioned methods 
are summarized in Table 1.

4. APPLICATION OF IONPS

The advantages of IONPs include high surface to volume ratio, 
superparamagnetic biocompatibility, better colloidal stability, better 
size control, and reproducibility. Moreover, they can easily be used 
for targeted applications using their magnetic properties. Some of the 
areas of applications of IONPs are mentioned below:

4.1. Catalysis
Catalysis is dependent on the number of active sites present on the 
surface area of catalyst. Surface of a catalyst must contain greater 
number of sites so that the reactants may easily undergo adsorption, 
reaction, and then desorption. In modern era, catalysts are generally in 
nanometric scale as they are more effective than conventional catalysts 
as they have higher surface area to volume ratio. The iron oxides have 
been used in number of catalytic reactions such as in the oxidation 
of styrene [68], thermal decomposition of ammonium perchlorate [69], 
hydrogenation of carbon dioxide to aromatic compounds [70], catalytic 
decomposition of hydrogen peroxide [71], production of biodiesel 
from castor oil [72], and production of hydrogen and oxygen, removal 
of carbon dioxide.

Iron oxides nanoparticles may have crystal defects which may be 
associated with a plane defect, line defect, or point defect. These 
defects attribute to different surface properties and play important role 
in chemical reaction as they help in electron transfer process [73].

4.2. Thermal Combustion
Iron oxides are added to propellants to increase combustion rate and 
its thrust-time curve. Therefore, playing an important role in tailoring 
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the burn rate of propellants. Fujimura et al. studied the effect of 
particle size and surface is of iron (III) oxide catalyst on burning rate 
of hydroxyl-terminated polybutadiene (HTPB) containing ammonium 
perchlorate as an oxidizer and concluded that catalytic efficiency 
increases with increase in specific area of nanosized iron (III) oxide 
catalyst [74].

Ammonium perchlorate is the mostly commonly used oxidizer 
used in propellants. However, the decomposition mechanism is not 
fully understood as it is a complex mechanism and occurs in two 
decomposition stage. First, endothermic reactions occur between 
perchloric acid and ammonium forming products such as nitrogen 
monoxide, dinitrogen oxide, oxygen, and chlorine at a temperature 
below 623 K. Second, exothermic reactions occur with release of 
volatile products which take place above 623 K. The presence of 
hematite nanocatalyst alters the exothermic positions of higher 
temperature decomposition stage showing its catalytic effect [75]. The 
catalytic effect of IONPs on decomposition of ammonium perchlorate 
is due to proton transfer mechanism. However, iron oxide is subjective 
to aggregation and leads to decrease in active sites during exothermic 
reactions of ammonium perchlorate [76].

4.3. Labeling and Imaging Agents
The use of IONPs as labeling and imaging agents may be attributed to the 
magnetic properties which are responsible for its targeted applications. 
Montet et al. used arginine -glycine-aspartic acid bind with IONPs for 
targeting BT-20 tumor and showed that nanoparticles can be targeted 
to cell surface in tumor cells [77]. Imaging studies were also performed 
with bare IONPs for labeling lymphocytes and leukocytes. MRI can be 
used for imaging at a resolution approaching the size of cell if the cell 
can be loaded with magnetic IONPs [78]. To increase the cell capacity, 
the IONPs are often combined with peptides, dendrimers, fragments of 
protein, folic acid, etc. A nanoparticle conjugate developed by binding 
methotrexate (MTX), a chemotherapeutic drug to IONPs, is a potential 
MRI contrast agent and a drug carrier for controlled drug delivery in 
cancer, as represented in Figure 3. The MTX-conjugated nanoparticles 
release drug under low pH conditions similar to the lysosome [79]. 

Similarly, IONPs functionalized with PVA were used for detection 
of neurodegenerative diseases. Amino-PVA functionalized IONPs 
were taken up by brain-derived microglial and endothelial cells 
and may be used of MRI detection of active lesions responsible for 
neurodegenerative diseases [80]. Hadjipanayis et al. developed IONPs 
binding with an antibody to detect mutant responsible for deletion of 
epidermal growth factor receptor present on glioblastoma multiforme 
cells. The results revealed that the survival of glioblastoma cell 
significantly decreases when conjugated nanoparticles bind to it and 
poses no toxicity to human astrocytes [81].

4.4. Thermal Ablation and Hyperthermia
Hyperthermia is the preferential death of tumor cells by heating cells 
in the range of 41–47°C [82]. IONPs generate heat when an alternating 
magnetic field is applied in combination of internal magnetic moment 
fluctuations in the particle which is used in hyperthermia. On contrast, 
thermal ablation uses higher temperature than hyperthermia which is 
above 47°C. Thermal ablation causes rapid death of tumor cells. The 
problem faced in using these methods is the maintenance of lower 
temperature for normal tissues while heating the tumor part to higher 
temperature. For cancer therapy, localized hyperthermia is used, in 
which a small area is heated with the help of radio waves, ultrasonic 
waves, and microwaves [83]. A  major challenge faced during 
thermal ablation and hyperthermia is the dosage of IONPs needed to 
maintain the heating rate required to obtain therapeutic temperature. 
To minimize the dosage and increase the heating rate, anisotropy or 
the monodispersity of the nanoparticles sample should be increased. 
Gonzales-Weimuller et  al. showed the dependence of heating rate 
on the particle size of IONPs for magnetic hyperthermia  [84]. The 
results showed that on increasing particle size, higher heating rates 
can be achieved. The hyperthermic effect can be increased by surface 
functionalization and decreasing thickness of surface coating. Inorganic 
coating such as gold coating used by Mohammed et al. increases the 
hyperthermic effect [85]. The gold coating on the IONPs increased 
the retention of superparamagnetism better than uncoated IONPs. 
Furthermore, the low-frequency magnetization field could possibly be 
used for hyperthermia if gold coated nanoparticles were used.

Table 1: Advantages and disadvantages of various methods of synthesis of iron oxide nanoparticles

Method of synthesis of iron oxide 
nanoparticles

Advantages Disadvantages

Coprecipitation method Simple and effective Inappropriate for the synthesis of high 
untainted, precise stoichiometric phase

Thermal decomposition method Uniformity particle size Formation of side products and requirement of 
high amount of energy

Microemulsion method No organic solvents involved and efficient 
control of the particle size

Requires high temperatures and critical 
pressure

Sol–gel or polyol method Aspect ratio, precisely controlled in size, and 
internal structure

High permeability, weak bonding, low wear 
resistance

Flow Injection method Homogeneity with high mixing with a 
accurate control of the procedure and good 
reproducibility

Under a laminar flow regime in a capillary 
reactor, it requires continuous or segmented 
mixing of reagents

Sonochemical method or sonolysis Size distribution in narrow particle Mechanism is not well understood
Microwave assisted synthesis Narrow size distribution and uniform size Ferrite colloids of small size
Electrochemical method Controllable particle size Inability to reproduce
Laser or spray method Large-scale products Requires very high temperatures
Biosynthesis Good reproducibility and scalability, high 

yield, and low cost
Slow and laborious
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Therefore, IONPs can be used a promising hyperthermia agent but 
with further improvement by improving particle size, morphology, and 
reproducibility.

4.5. Drug Delivery
The conventional way of drug delivery is based on taking the drug 
orally or intravascularly, and then, the drug is distributed throughout 
the human body. However, the affected organ takes up only small 
amount of drug due to distribution of drug throughout the body and 
reduced drug diffusion. Targeted drug delivery is essential to bring 
about the necessary therapeutic effect of the drug and for this magnetic 
iron nanoparticles are a promising agent. Functionalized magnetic 
IONPs can be used to carry the required drug to the affected organ. In 
general, the functionalization of nanoparticles is done with components 
that are biocompatible and can cross the biological barriers. For drug 
delivery, stability and surface properties are important for the drug 
to be efficient. The size of the functionalized nanoparticles so as to 
penetrate through cells without being removed by the renal activity. 
In addition, charge on the functionalized IONPs is also important as 
positively charged nanoparticle has a better uptake by human breast 
cancer cells than negatively charge nanoparticle. Adsorption of IONPs 
with a hydrophobic surface is easy  [86]. S. Correia Carreira et al. 
reported the uptake of IONPs by human placenta and demonstrated 
the effect of size on toxicity and transport through placental barrier 
model [87]. Kebede et al. reported conjugated IONPs with chitosan 
functionalized with insulin and 51% reduction was seen in blood 
glucose level for different levels of diabetes [88]. Veiseh et al. 
showed that the external magnetic field hampers the response of drug 
functionalized magnetic IONPs [89]. Drug delivery by nanoparticles 
is also affected by factors such as temperature, pH, osmolality, type of 
target cell, functionalization group, and route of drug delivery. Different 
types of polymers and copolymers that can be used to functionalize 
nanoparticles used in drug delivery are represented in Figure 4.

4.6. Biosensors
IONPs can be effectively used to sense biomolecules with high 
sensitivity and thus can diagnose diseases at an early stage. IONPs can 
act as magnetic relaxation switches (MRS) due to superparamagnetic 
core of individual nanoparticle. Perez et al. reported that mRNA, 

pathogens, enzymes, and proteins can be detected with the help of 
MRS nanosensor with high sensitivity [90]. Functionalized IONPs 
bead-based nanoparticle can be used as detector or generator of signal 
and used for diagnosis of lactate, cholesterol, glucose, creatinine, and 
urea [91] and is represented in Figure 5.

IONPs with Glucose oxidase, gold, and carbon nanotube chitosan 
composite sensors have been developed with high accuracy, more 
sensitivity, and high stability. Recently, lysine modified monomer 
with 10, 12-pentacosadiyonic acid (Lys-PCDA) on IONPs was used to 
detect and capture serum proteins [92]. There are still challenges in use 
of magnetic IONPs as biosensors.

4.7. Other Application
IONPs have also been used in fertilizers and pesticides. Furthermore, 
they have been used to increase crop yields in combination with carbon 
nanotubes [93]. IONPs have been used for seed treatment before seed 
sowing. They are known to increase breakdown of starch and produce 
larger number of leaves, more biomass, and changes in the leaf 
morphology. Precision farming with the help of magnetic farming has 
also been reported.

IONPs are also used in food related applications, where they are used 
in nanocoatings, packaging materials, nanofood [21], etc. They are also 
used in environmental related applications where they enhance waste 
water treatment, soil remediation, adsorption of gaseous pollutants 
and their decomposition, reducing wastes in manufacturing processes, 
energy saving by improving fuel efficiency, improvising fuel cells and 
batteries, solar panels, aerogels, thermoelectric materials [94,95], etc. 
IONPs are used in coatings of photovoltaic devices [17], construction 
materials, automobile additives, textile industries, defense and 
aerospace engineering, etc.

5. FACTORS CONTRIBUTING TO THE EFFICACY 
OF IRON OXIDE NANOPARTICLES OVER OTHER 
NANOPARTICLES

•	 The ways to obtain IONPs are simple, easy, and non-hazardous
•	 The preparation of IONPs is cost-effective and only involves 

higher cost of production when high end use is required as in drug 
delivery, imaging agents, and contrasting agents

Figure 3: Schematic representation of magnetic nanoparticle-based drug delivery system. It shows how with the help of external 
magnetic field, magnetic carriers concentrate at the targeted site. After accumulation of magnetic carrier drugs are released from 
them which are effectively taken up by the tumor cells [34].
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Figure 4: Schematic representation of various types of polymers and copolymers that can be used for surface functionalization of 
nanoparticles in drug delivery system [89].

Figure 5: Type of magnetic bead-based biosensors and related information [34].
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•	 IONPs have high surface to volume ratio that allows greater 
interaction with reactants or the group to be functionalized on the 
nanoparticle surface

•	 Shape, durability, scalability, reproducibility, growth, and 
nucleation of IONP can be controlled proving to be an added 
advantage in its application

•	 By tailoring the surface functionalization of IONPs, it can be used 
for selective adsorption of metals. Thus, can used for remediation 
of metal ions from the environment

•	 High magnetic susceptibility makes IONPs an efficient material 
for the use in targeted applications

•	 These IONPs can easily be removed from the body by renal 
clearance, thereby an effective drug delivery system can be 
established using these nanoparticles

•	 The ability of IONP suspension to absorb oscillating magnetic 
field and convert it into thermal energy finds applications in 
hyperthermia and thermal ablation

•	 High coactivity, low Curie temperature, and excellent catalytic 
properties make IONPs first choice for the reaction, where a 
cheap catalyst is required.

6. CONCLUSION AND SUMMARY

To conclude, great progress has been achieved in the areas related to 
synthesis and applications of IONPs in various fields, of which some 
are enlisted above. However, much remains to be deciphered so as 
to achieve better control over size, morphology, nature, solubility, 
magnetic properties, compositions, monodispersity, and surface 
to volume ratio. A  major challenge that is encountered during the 
synthesis is the variation in particle size distribution and dispersity in 
solvents as IONPs are hydrophobic in nature. These problems can be 
dealt by better synthesis methods and conjugation with other materials 
mainly of organic origin so that the nanoparticles can be used for 
applications related to diagnosing, imaging, labeling, and other medical 
applications which are the need of the hour. The future perspective 
related to IONPs is to develop greener methods of synthesis that should 
have more greener applications as the toxicity related to nanoparticles 
is the concern.
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