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1. INTRODUCTION

In the past decade, the corporate world has undergone significant 
changes due to heightened competition in a volatile market. As a result 
of globalization, chemical process firms are experiencing decreasing 
profit margins, necessitating technical innovation to increase process 
efficiency through yield maximization. To reduce costs and boost 
revenues, chemical companies worldwide are seeking innovative 
approaches. One such approach involves the utilization of data 
mining methods based on artificial intelligence to derive value from 
a substantial amount of experimental data. Knowledge discovery is a 
particularly promising cutting-edge method for process analysis. In 
this context, this paper explores the potential of knowledge discovery 
techniques to optimize chemical processes and improve profit margins. 
The study aims to contribute to the body of research on technical 
innovation in the chemical industry and offer insights into how data-
driven methods can aid in addressing the challenges faced by chemical 
process firms in a highly competitive marketplace.

Chemical bioreactors have become an increasingly attractive avenue 
for researchers seeking new ways to generate revenue. These reactors 
are critical pieces of equipment that convert raw ingredients into 
finished goods and add significant value, making reactor optimization 
crucial for overall profitability. However, to fully utilize fed-
batch bioreactors, intricate systems of bioprocesses must first be 
modeled [1]. Biochemical processes are characterized by intricate 
reaction kinetics and thermodynamics, making it challenging to create 
a workable phenomenological model for actual experimental reactors. 
The lack of knowledge of the kinetics of chemical reactions hinders 
reactor optimization, as most chemical bioreactors operate as “black 
boxes” due to reliability and safety concerns, leading to suboptimal 
operation and reduced profitability. Reactors are, therefore, unexplored 
territory in the world of chemical engineering. However, even a small 

improvement in catalyst selectivity and reaction yield in large-scale 
operations can have a significant impact on the number of raw materials 
used and profitability. To address these challenges, a straightforward 
option is to apply a data-driven, efficient computational technique 
to create approximate reactor models for complex reaction systems. 
These models can then be used to optimize the reactor and boost 
revenue. This paper presents a methodology that leverages data-driven 
techniques to optimize chemical bioreactors, using the example of 
fed-batch bioreactors for the production of finished goods. The study 
aims to contribute to the body of research on reactor optimization and 
offer insights into how data-driven models can aid in addressing the 
challenges faced by chemical engineering in optimizing bioreactors 
for maximum profitability [1]. The paper highlights the importance of 
understanding reaction kinetics and thermodynamics and the potential 
for data-driven approaches to generate significant value in the chemical 
industry.

Chemical experimentalists are accumulating vast quantities of reactor 
input and output experimental data every minute. The challenge is how 
to use this data to increase revenue. Data-driven modeling techniques, 
such as artificial neural networks (ANN) and support vector machines 
(SVM), have gained popularity due to their excellent prediction 
skills. However, these models are often rejected by engineers due 
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explainability of the model. The model was used because it could effectively represent the underlying physics of the system. 
An acceptable model was constructed, and then it underwent optimization. This study looked at how to increase gluconic acid 
yield, which has a big influence on how profitable the process is. By applying an evolutionary algorithm to the produced model, 
an ideal solution was also discovered.
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to their lack of comprehensibility and “black-box” nature. While 
ANN produces equations with complex sigmoidal functions and 
tuning factors, SVM models are limited in their ability to explain 
the relationship between output variables and input characteristics. 
To better understand and profit from this relationship, process 
engineers seek intelligible equations in differential/algebraic form. 
Therefore, alternative computational techniques must be explored. 
This paper aims to investigate the effectiveness of multi-gene genetic 
programming (MGP), a data-driven approach, to develop a reliable 
model for the fed-batch glucose to gluconic acid bioreactor. The model 
will be optimized using a genetic algorithm (GA) to maximize profit 
while maintaining the explainability of the model. This study aims 
to contribute to the search for alternative computational techniques 
for reactor optimization, thus improving overall profitability in the 
chemical process industry.

The development of accurate models to predict the outcomes of 
complex systems is crucial in various fields of research. In chemical 
engineering, the use of data-driven modelling techniques such as 
ANN and SVM has proven successful in generating nonlinear models. 
However, the black-box nature of these models, combined with their 
lack of comprehensibility, has led to reluctance among engineers to 
adopt them for critical applications. This has spurred the exploration of 
alternative computational techniques to generate intelligible equations 
that can better explain the relationship between input variables and 
output characteristics of a system.

One such technique is GP, which has shown promise in overcoming the 
limitations of ANN and SVM models. GP is a subset of evolutionary 
modeling techniques that creates non-linear structured models as 
closed-form equations connecting the available data. The accuracy 
of each equation’s numerous parameters is estimated to accurately 
forecast the outcome, and the application of “survival of the fittest” 
principles determines the likelihood of a model surviving to the next 
generation. GP allows the recombination of earlier models to generate 
new models, with the goal of improving predictability with each 
generation [2-4].

In the late 1980s, Koza’s symbolic regression research demonstrated 
the breakthrough in GP, and subsequent studies have shown 
its effectiveness in various fields such as robotics, gaming, and 
control [3-5]. In chemical engineering, GP has been used for the 
dynamic and steady-state modeling of complex systems such as twin-
screw frying extruders, binary distillation columns, non-linear vacuum 
distillation columns, and reaction test issues. In addition, GP has 
been combined with other techniques, such as principal component 
analysis (PCA), to develop nonlinear models for product design. GP 
has also been used to produce empirical models in a process system, 
and to automate the creation of nonlinear model predictive control. 
The promising results of GP in generating intelligible equations that 
accurately predict the outcome of complex systems make it a valuable 
technique for process engineers [5-9].

MGP has been proposed as a robust variation of GP for non-
linear modeling and has been shown to produce more precise 
and computationally efficient models than normal GP. Despite its 
outstanding prediction skills, there are surprisingly few applications 
of MGP in fed-batch experimental bioreactors. In this study, we aim 
to fill this gap by applying MGP to model a biochemical reactor. MGP 
builds multi-gene mathematical models of predictor response data 
using low-order nonlinear combinations of input variables [10,11]. 
Unlike the conventional GP which evaluates a single tree expression, 
MGP combines many distinct genes using a multi-gene approach 
to make a single gene. The previous studies have shown that MGP 
performed better than other machine learning techniques such as ANN 

and SVM in terms of prediction and model simplicity. In this paper, 
we investigate the performance of MGP modeling in a biochemical 
reactor and compare it with other modeling techniques. Our results 
could provide new insights into the use of MGP for modeling fed-batch 
experimental bioreactors and could have significant implications for 
improving the profitability of these systems [11-15].

This study aims to develop a closed-form equation model for a 
fed-batch experimental bioreactor that is accurate, portable, and 
explainable for process engineers to understand the system better. The 
model will then be used to optimize the input process parameters using 
a nature-inspired metaheuristic optimization strategy to maximize the 
synthesis of gluconic acid. The multi-objective GA will be used to 
optimize the input space of the reactor, and Pareto optimal solutions 
will be obtained using the MGP model [16-20]. The purpose of this 
study is to demonstrate the applicability of the MGP technique in 
bioreactor modeling and optimization, as well as to provide a useful 
tool for process engineers in the bioprocessing industry [16-20]. Thus, 
a general methodology has been developed in this work, in which a 
data-driven approach, such as MGP, was used as a modeling tool, and 
the model was then post-processed to increase the explainability of 
the model. The model was used because it could effectively represent 
the underlying physics of the system. An acceptable model was 
constructed, and then it underwent optimization. This study looked at 
how to increase gluconic acid yield, which has a big influence on how 
profitable the process is. By applying an evolutionary algorithm to the 
produced model, an ideal solution was also proposed.

2. CASE STUDY OF GLUCONIC ACID BIOREACTOR

2.1. Background
Gluconic acid finds its applications in various industries, including 
medicine and textiles, as an acidulent, metal supplement, chelating 
agent, and more. However, due to the complexity of the multiphase 
enzymatic processes in fed-batch experimental bioreactors for gluconic 
acid production, it is challenging to obtain a reliable first-principle-
based model. Therefore, data-driven modeling techniques are being 
explored as an alternative to overcome this challenge. The availability 
of a significant amount of process data from multiple bioreactor runs 
makes data-driven modeling an attractive option. The main objective 
of this project is to leverage this data to develop a framework that can 
translate the knowledge hidden in the data into increased profitability 
(Appendix Table 1). The project aims to create a reliable model of 
the fed-batch experimental bioreactor for gluconic acid production, 
which is accurate, portable, and easy to interpret. This model will be 
used to optimize the input parameters of the bioreactor using a multi-
objective GA to maximize the yield of gluconic acid. By achieving 
these objectives, the project aims to offer insights into the optimization 
of gluconic acid production and its application in various industries.

2.1.1. Reactions
Commercial production of gluconic acid mainly involves two biological 
processes: Freecell fermentation and immobilized enzyme-based 
bioconversion of glucose. Glucose oxidase (GOD) of Aspergillus niger 
and Gluconobacter are commonly used in the latter method, which 
involves oxidation of glucose to glucono-d-lactone by GOD, followed 
by hydrolysis to gluconic acid by lactonase. However, immobilization 
and separation of enzymes pose significant challenges, leading to high 
cost and time consumption, as well as enzyme denaturization.

Free-cell fermentation, on the other hand, subjects mycelia to various 
mass and heat-transfer stressors. Although mechanical agitation 
helps overcome these limitations, it causes turbulence, which can 
result in cell disintegration, fracture, and pellet breaking, leading to 
reduced cellular activity. Immobilizing cells on a support matrix under 
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submerged conditions is a more efficient and cost-effective approach 
for gluconic acid fermentation. Despite these methods, a reliable and 
efficient process for gluconic acid production is still required.

In this context, this paper aims to develop a data-driven modeling 
framework for a fed-batch experimental bioreactor to maximize 
gluconic acid yield. By leveraging the vast amount of process data 
available, the goal is to create a reliable and portable model that 
engineers can use to better understand the process and optimize input 
process parameters.

   =
Moles of gluconic acid producedGluconic Acid Yield

Moles of glucose consumed
 (1)

2.1.2. Process flow diagram
A novel batch fermentation process has been developed for the 
production of gluconic acid from glucose, which utilizes immobilized 
A. niger on a cellulosic fabric support matrix to achieve higher yields. 
The increased productivity is attributed to the better interaction 
between dissolved oxygen and fungal mycelia. This approach uses 
a continuous substrate dripping mechanism instead of mechanical 
agitation, as in free-cell fermentation, to enhance the reaction. Thus, 
the yield of the bioreactor is critical for overall profitability of gluconic 
acid production.

2.1.3. Production objectives
The aim of this study is to develop a mathematical model for the 
novel batch fermentation process of glucose to gluconic acid and to 
determine the optimal operating parameters for improved gluconic acid 
production. The fermenter model was created based on experimental 
data that considered the effects of substrate (glucose), biomass, and 
dissolved oxygen levels. Figure 1 shows that the conversion of glucose 
to gluconic acid using A. niger immobilized on cellulosic microfibrils 
involves complex mass transport and reaction processes. Creating 
a phenomenological or first-principles process model has become 
challenging due to the limited understanding of the physicochemical 
processes that drive bioconversion and the associated kinetic and 
transport mechanisms. In addition, the process dynamics have been 
reported to be non-linear. Therefore, the goal of this study is to develop 
a data-driven model that can predict the system’s behavior and optimize 
the process parameters to enhance gluconic acid production.

3. GP: AT A GLANCE

GP is an optimization technique that utilizes a symbolic approach and 
is considered as a type of metaheuristic. It involves the creation of 
equations or computer programs to solve a given problem, inspired by 
the concept of natural selection’s “survival of the fittest” in the Darwinian 
theory of evolution. GP starts with an initial population of randomly 
generated solutions, which are then evaluated and selected based on 
their fitness. The selected solutions then undergo genetic operations 
such as crossover and mutation to create new offspring, which are again 
evaluated and selected based on their fitness. This process is repeated 
for multiple generations until an optimal solution is found, based on the 
fitness function. GP has been shown to be effective in solving various 
optimization problems, including data analysis, image processing, and 
control system design, among others [9]. The following is the general 
form of the reactor model to be obtained (Equation 2).

y=f (X, β) (2)

where y indicates the process output variable (Selectivity or catalyst 
temperature); X is the N-dimensional vector of input variables such 
as flow, pressure, and inlet concentration of various raw materials 
(X = [x1, x2., xn., xN]T), and f denotes a non-linear function whose 
parameters are defined in terms of a P-dimensional vector, β [β1, β2,…, 

βK]P. If experimental data of input and output variables are given, GP 
algorithm tries to best fit the data by changing its functional form and 
parameter vector β.

3.1. Executional Steps of GP
The algorithm of GP has been illustrated in Figure 2. The executional 
steps of GP are mentioned as below [1]:

Step 1 (Initialization): The GP algorithm generates random equations to 
fit data in Equation 4, creating a population of strings (chromosomes) 
that represent candidate solutions. These members consist of functions 
and terminals organized hierarchically in a tree-like structure. The 

Figure 1: Experimental setup of the bioprocess [18].

Figure 2: Algorithm of genetic programming.
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function set includes algebraic and Boolean operators, while the 
terminal set consists of variables, numerical, and logical constants. 
Figure 3 provides an example of a typical tree structure.

Step 2 (Generation): This is an iterative procedure that aims to generate 
a population with a high fitness value. The steps involved are:
1. The fitness of each individual in the population is evaluated using 

a pre-specified fitness function. This function can be dependent on 
the coefficient of determination (R2) or the error value. The higher 
the R2 or the lower the error, the higher the fitness of an individual

2. Selection of individuals with high fitness is done through 
probabilistic determination

3. New individuals are created through genetic operators such as 
reproduction, crossover, and mutation. Reproduction involves 
copying the existing population without any changes, while 
crossover involves interchanging chromosomes of the parent 
generation to produce offspring. In mutation, existing elements in 
the offspring are replaced with other elements.

These steps are illustrated in Figure 3. The termination criteria for the 
algorithm are met when the best program is found as an approximate 
solution to the problem.

3.1.1. MGP
The standard GP is less accurate for symbolic regression of specified 
input output datasets, but the multi-gene strategy improves the 

model’s accuracy to a greater extent. MGP creates a weighted linear 
combination of smaller GP trees or genes to enhance fitness. The 
anticipated output variable in MGP is the sum of the bias term and the 
weighted output of individual trees or genes. Equation 3 expresses the 
expected variables in MGP:

0 1=
= +∑N

pred i ii
y b w g  (3)

where ypred is the predicted output, bo is the bias term, gi is the genes 
or trees, and wi is the corresponding weightages. The weightages 
and bias are calculated using the least squares method, similar to 
linear regression. As a result, MGP utilizes tiny trees to capture 
nonlinear behavior while also employing traditional linear regression 
techniques [17,19].

In Figure 4, a typical MGP model is shown, which uses three input 
variables (x1, x2 and x3) to predict the output variable. The MGP 
model is created by linearly combining two genes, as depicted in 
the figure. During training, the bias and weightages (b0, w1, and w2) 
are determined using the least square approach. Users can set the 
maximum number of genes to be used and the maximum depth of 
a tree. It is important to note that increasing the depth and number 
of genes will result in higher accuracy, but it also increases the 
complexity of the model.

Figure 3: Crossover and mutation in GP.
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4. MATHEMATICAL MODELLING OF BIOPROCESS

4.1. Selection of Input and Output Variables for Modelling
Reactor yield is preserved as an output variable since it has such a 
substantial impact on total profitability. As a “wish list” of input 
variables, all reactor operational parameters that potentially affect yield 
are kept. All bioreactor experimental data were initially gathered. Then, 
after consulting with a technical specialist, all of the input variables that 
could affect the output variable were recorded. Following that, a cross-
correlation study was performed. The correlation coefficients of each 
input variable with the output variable, as well as inter-input cross-
correlation coefficients, were determined using this method [20,21].

The following criteria are used to shortlist the input variables:
1. For a particular input variable, there should be a high cross-

correlation coefficient with the output variable
2. The values of cross-correlation coefficients of inter-input variables 

should be low
3. The input set of variables was kept as minimum as possible to 

avoid the complexity of the model.

Based on the above criteria, three input variables are finally shortlisted 
and tabulated in Table 1.

4.2. Data Collection, Data Cleaning and Removal of Outliers
The glucose to gluconic acid bioprocess GP-based model was 
constructed using experimental input-output data obtained from the 
fermenter, using the gluconic acid-producing A. niger NCIM 545 
strain. The quality of data used in constructing data-driven models 
is crucial to the performance of the model. Thus, an automatic data 
cleaning technique was employed to ensure high-quality data. Due to 
the large amount of process data, an automated data cleaning method 
was developed to eliminate the need for manual cleaning. The data were 
pre-processed using multivariate PCA, and an automated MATLAB-
based algorithm was developed to generate a multivariate statistical 

vector known as t-squared from the experimental operating dataset. 
Rows in the t-squared vector with values above the 95th percentile were 
regarded as outliers and were therefore removed from the dataset.

It is important to note that noisy and faulty data can have a significant 
impact on the model’s performance. Hence, data quality is a critical 
factor to consider in data-driven modeling. By utilizing an automated 
data cleaning technique, this study ensured that the data used to 
construct the GP-based model was of high quality.

4.3. Modeling through MGP
The study used MGP-based modeling with a dataset that contained three 
input variables and one output variable. The dataset was first cleansed 
using an automatic data-cleaning technique to eliminate outliers. The 
data were then randomly partitioned into a training set (80% of the 
total data) and a test set (20% of the total data) for the purpose of cross-
validation. The MGP-based model was developed using the GPTIPS 
toolbox and MATLAB 2019a. The fitness function used in this study 
was the root-mean-squared error (RMSE), and the program was run to 
minimize the RMSE value. Since the MGP is stochastic in nature, the 
software was run 100 times to generate the model.

Cross-validation was employed to enhance the model’s generalizability 
by testing its accuracy on the test data set. The goal of cross-validation 
is to assess how well the model can predict the outcomes of new data 
that it has not seen before. The model is trained on the training data 
set and then tested on the test data set to determine its predictive 
performance.

The use of MGP-based modeling allowed for the development of a 
highly accurate model for the glucose to gluconic acid bioprocess. The 
model’s accuracy was evaluated using the RMSE, which measures the 
difference between the actual and predicted values. The study utilized 
a large dataset and employed an automatic data cleaning technique, 
which improved the quality of the data used to develop the model. 
Cross-validation was used to ensure that the model had good predictive 

Figure 4: A typical MGP model.

Figure 5: Pareto diagram of model complexity versus fitness 
for gluconic acid yield.

Table 1: Input output variables for model building and their 
range

Variables used in modeling Data range
Input variables

Glucose concentration, g/L (x1) 100.0–180.0
Biomass concentration, g/L (x2) 1.00–3.00
Dissolved oxygen concentration, mg/L (x3) 10.0–60.0

Output variables
Gluconic Acid Yield, % (Y1) 5.9–94.58
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performance on new data. Overall, the study demonstrated that MGP-
based modeling is a highly effective technique for developing accurate 
models for complex bioprocesses.

4.4. Optimization through GA
After the development of a reliable and accurate bioreactor model, it 
is important to optimize the process parameters to achieve maximum 
profitability. This involves determining the optimal process conditions 
that will maximize reactor yield. To balance the two conflicting 
objectives, a multi-objective GA is used in the present study. GAs are 
a popular and effective optimization tool that have been widely applied 
in various fields, including engineering and medicine.

For implementation of GA algorithm, an objective function was 
developed which is as follows (Equation 4):

F1(x) = 1/Y1(x) (4)

where Y1(x) is the function of the model corresponding to gluconic acid 
yield. Therefore, in MOGA F1(x) have to be minimized to maximize 
the yield of the bioprocess.

5. RESULTS AND DISCUSSION

5.1. Performance of GP Model
The primary objective of this study is to develop a straightforward, 
accurate, and transferable model equation for the gluconic acid 
fermenter. To create this model, MGP parameters were determined 
using a combination of trial-and-error methods and a literature review. 
The model was developed using basic arithmetic operators and 
functions, and the following parameters were set: A population size of 
250, a maximum generation of 500, a maximum tree depth of 4, and 
a maximum number of genes of 6. It is important to note that while 
increasing these parameters may enhance the model’s accuracy, it may 
also increase the complexity of the solutions and make the program 
computationally expensive. Using these parameters, the goal is to 
create a model that is both accurate and simple.

5.1.1. Developing closed form model equations
The primary objective of this study is to develop a straightforward, 
accurate, and transferable model equation for the gluconic acid 
fermenter. To create this model, MGP parameters were determined 
using a combination of trial-and-error methods and a literature review. 
The model was developed using basic arithmetic operators and 
functions, and the following parameters were set: A population size of 
250, a maximum generation of 500, a maximum tree depth of 4, and 
a maximum number of genes of 6. It is important to note that while 
increasing these parameters may enhance the model’s accuracy, it may 
also increase the complexity of the solutions and make the program 
computationally expensive. Using these parameters, the goal is to 
create a model that is both accurate and simple.

5.1.2. Controlling model complexity
Bloat, whether vertical or horizontal, is a common challenge when 
using multigene regression models. Vertical bloat refers to the tendency 
to evolve trees with terms that provide little or no performance benefit, 
which is associated with overfitting during model development. To 
address this issue, this study limited tree depth and used a Pareto 
tournament between expressional complexity and accuracy. Using the 
trial-and-error method, the tree depth was set to 4, and Pareto diagrams 
were formed to reduce vertical bloats [1].

Horizontal bloat occurs when multigene models acquire genes that 
are either performance neutral or offer extremely minor incremental 
performance improvements. This behavior is essentially the same 
as non-regularized models, where adding model terms results in a 

monotonically increasing R2 on training data, even if the terms are not 
meaningful or do not allow the model to generalize well to testing or 
validation data sets. To avoid horizontal bloat in multigene regression, 
the simplest technique is to limit the number of genes allowed in the 
model. After using the trial-and-error procedure, the maximum number 
of genes in this study was kept at six.

The aim of the study is to create a gluconic acid fermenter closed-
form model equation that is accurate, simple, portable, and easy to 
understand. The MGP parameters were determined using trial and 
error and a review of the literature. Basic arithmetic operators and 
functions were used, and the population size, maximum generation, 
maximum tree depth, and a maximum number of genes were set at 
250, 500, 4, and 6, respectively. While increasing these parameters 
may improve the model’s accuracy, it can also increase the complexity 
of the solutions and make the program computationally expensive. 
By balancing the accuracy and complexity of the model, this study 
developed a reliable and understandable model for optimizing the 
bioreactor process parameters to maximize reactor yield.

5.1.3. Shortlisting the models
The following criteria were used to pick a viable model from a pool of 
probable candidates or representative model equations (Table 2) with 
varied degrees of complexity and accuracy:

Simplicity: The model should have as little complexity as feasible.

Prediction accuracy: The constructed model should have a low RMSE 
and a high R2 value.

The model equation should capture the process’s underlying physics. In 
other words, model equations should contain a physical understanding 
of the system under study, not just a predictive association. This is a 
crucial factor to consider while creating realistic bioreactor models. 
To judge this capability, domain experts’ qualitative knowledge about 
the bioreactor behavior is collected. Their theoretical knowledge, 
experience, and observations of bioreactor behavior are summarized 
in Table 3.

To evaluate the accuracy and effectiveness of the developed equations, 
a rigorous testing process was conducted. All ten equations listed in 
Table 4 were subject to scrutiny to ensure that they were consistent 
with experimental observations. The models were tested using ten 
separate datasets where all variables except glucose concentration 
were kept constant at their median values, while glucose concentration 

Table 2: Rules to select best model from real experimental 
observations

Sl. no Parameters changed keeping all 
other parameters constant

What happen to  
gluconic acid yield?

1 If glucose concentration increase Increase
2 If biomass concentration increase No change
3 If DO concentration increase Increase
DO: Dissolved oxygen

Table 3: Performance of GP model

Model Training Testing
R2 APE RMSE R2 APE RMSE

Gluconic acid 
yield model

0.998 0.169 0.232 0.984 0.483 0.186

GP: Genetic programming, R2: Coefficient of determination, 
APE: Average percentage error, RMSE: Root-mean-squared error



 KROS Publications 139 www.ijacskros.com

Indian Journal of Advances in Chemical Science 2023; 11(2): 133-142

was varied between its minimum and maximum values in ten equal 
intervals. The resulting data sets were then input into each of the 
equations in Table 4 to generate ten sets of gluconic acid yield. The 
glucose concentration versus gluconic acid yield plots were then 
plotted, verifying observation 1 of Table 4.

This same process was repeated for all other observations in Table 4, with 
the resulting plots shown in Figure 6 for gluconic acid yield. This testing 
process was crucial to ensure that the developed models were accurate 
and effective in predicting the behavior of the bioreactor system. The 
models were also evaluated for simplicity, prediction accuracy, and their 
ability to capture the underlying physics of the system, as described in 
the previous section. Overall, the chosen model equation had the least 
complexity, the highest prediction accuracy (low RMSE and high R2 
value), and captured the physical understanding of the bioreactor system, 
as judged by domain experts’ qualitative knowledge.

Any model equation that does not comply with the observations in 
Table 2 is rejected as it fails to capture the underlying physics of the 

bioreactor and is not consistent with general observations. These 
rejected models only represent a complex data fitting equation without 
any actual sense. Only one model equation for catalyst selectivity and 
one for reactor temperature were ultimately chosen from the shortlisted 
models, as mentioned in Equation 5. These two equations were 
considered as the representative models for selectivity and temperature, 
as they were highly accurate, adhered to the Table 2 observations, and 
captured the internal physics of the reactor.

Y1 = 0.123 (x1
3 x3)1/2 - 0.00682 x1

2 x3
1/2 - 12.6 x3 - 0.00288 (x3 - 1.0 

x3
1/2)3 + 12.6 x1

1/2 - 171.0 x1
1/4 + 12.6 x3

1/2 + 0.286 (x3 - 1.0 x1
1/2) 

(x3 - 1.0 x3
1/2) + 334.0 (5)

The corresponding R2 and average percentage error (APE) of the above 
model for training and test data are mentioned in Table 3.

The high values of R2 and low values of APE obtained from the model 
for gluconic acid yield (Table 3) suggest that the predicted output 
values are in agreement with the actual output values, and the model 

Table 4: Selectivity model equations: Expressional complexity/performance characteristics (on training data) of symbolic models 
on the pareto front

Model ID Goodness of fit (R2) Model complexity Model
2 0.999 113 0.123 (x1

3 x3) 1/2-0.00682 x1
2 x3

1/2-12.6 x3-0.00288 (x3-1.0 x3
1/2) 3+12.6 

x1
1/2-171.0 x1

1/4+12.6 x3
1/2+0.286 (x3-1.0 x1

1/2) (x3-1.0 x3
1/2) + 334.0

85 0.999 125 0.125 (x1
3 x3) 1/2-0.00694 x1

2 x3
1/2-14.3 x3+14.3 (2.0 x3-4.19) 1/2-0.0031 

(x3-1.0 x3
1/2) 3+14.3 x1

1/2-188.0 x1
1/4+0.313 (x3-1.0 x1

1/2) (x3-1.0 x3
1/2) + 370.0

563 0.923 26 1.22e-4 x1 x3
2+1.38 (x1 x3) 1/2-3.46e-4 x3

3-38.2
581 0.983 86 0.435 x1+0.0673 (x1 x3

4) 1/2-0.00274 x1 x3
2-0.0635 (x3

3 (x3+9.0) (x3+9.03)) 
1/2+0.00288 x3

3-46.0
584 0.854 14 6.84e-5 x1

2 x3-9.2e-5 x3
3+11.9

627 0.904 24 2.03 x3+0.00232 (x1
4) 1/2-2.19e-4 x3

3-44.9
873 0.998 107 75.1 x3-0.0152 x1+0.0103 x1 x3-0.00381 x1 x3

2-8.7e-4 x1
2 x3+1.3 x1 

x3
1/2+0.0712 x1 x3

3/2-36.1 x1
1/4 x3-0.00381 x1

2-86.0
887 0.925 31 5.18e-4 x1 x3-0.525 x3-4.36e-5 x1

2 x3+0.194 x1 x3
1/2-53.8

894 0.981 78 0.00197 x1 x3-32.4 x3-5.24e-4 x1-1.31e-4 x1 x3
2-1.66e-4 x1

2 x3+11.0 x1
1/4 

x3-1.31e-4 x1
2-2.99

1,131 0.999 136 1.79 x3 + (40.3 x3
3)/x1

2+1.28 (x3
2 (x1+x3+7.82)) 1/2-43.5 (x3

3/x1) 1/2+0.896 
x3

2-0.0196 x3
3/2 (x1+x3+20.4) - (0.326 x3

2 (2.0 x3+7.91))/x1-16.7
R2: Coefficient of determination

Figure 6: Influence of each variable on gluconic acid yield.
c

b
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is reliable, reasonably accurate, and captures the underlying physics of 
the bioreactor. In addition, the high R2 value on unseen test data and 
low APE indicate that the model can generalize well and accurately 
learn the non-linear input-output relationship. The performance of the 
models on both training and testing data is depicted in Figure 7, with 
the actual versus predicted curves being almost identical, indicating 
good prediction accuracy of the model.

From Table 3 and Figure 7, it is concluded that developed model is 
highly accurate and reliable as it also performs well with unseen test 
data.

5.1.4. Generation of explainable model equations
MGP modeling provides advantages over ANN and SVR approaches 
because it produces closed-form equations that are portable and 
implantable in distributed control systems. However, the created 
equations can be complex and difficult to interpret. To improve 
interpretability, a methodology was proposed in this study. The 
methodology involves adjusting one variable at a time from its 
lowest to highest value while keeping other input variables constant 
and using MGP’s selectivity equations to predict selectivity values. 
A trendline is constructed based on the predicted values, and the 
equation and R2 value are indicated in the figure. A trend line curve 
is chosen that closely matches the data, based on eye examination 
and R2 value. The developed trend lines are decisive and match the 
actual experimental observations, following Table 2. The trend lines 
capture the nonlinear relationship between reactor selectivity and 
operating parameters, enabling experimental engineers to determine 
how input parameters impact gluconic acid yield. For example, 
increasing glucose and dissolved oxygen concentrations improve 
gluconic acid yield, while increasing biomass has no impact on 
yield. The relationship between yield and glucose and dissolved 
oxygen is represented by second and third-order polynomials, 
respectively. Finally, the trend line equations are used to develop the 
explainable Equation 6. The developed methodology enhances the 
interpretability of the MGP model, enabling experimental engineers 
to gain insight into how operating parameters impact gluconic acid 
yield.

( ) ( ) ( )
( ) ( )

2 2 3 3
1 1 3

2 2
3 3

 0.0157 5.1436 0.0012 

0.1136  1.3496 81.50

=− − + − − −

+ − − − +

avg avg avg

avg avg

Yield x x x x x x

x x x x (6)

Where x1, x2, x3 are the actual value of the 3 input variables and x1, avg, 
x2, avg, x3, avg are the average (50 percentile) value of input variables 
respectively.

Each term in the Equation 6 represents the change in selectivity if a 
particular parameter deviates from its average value. For example, the 
term, represents the deviation of glucose concentration from its average 

value and when it multiplied by coefficient 5.1436, represents the yield 
gain (or penalty) due to glucose. In this way, all three parameters 
contribution is calculated in Equation 6 and it is added with 81.5% 
(average yield) to get the actual yield.

The main advantage of this equation (Equation 6) over the GP equation 
(Equation 5) is that it may be easily understood by an experimental 
engineer. The equation is basic and incorporates terms or parametric 
coefficients that indicate the relative relevance of each parameter on 
overall yield if it differs from these base values. It also shows if each 
parameter’s effect is linear or non-linear.

Equation 6 is then used to predict the selectivity of 3-year actual data 
and predicted, and actual yield is compared. The prediction error is 
0.7% and R2 is 0.98. This low value of prediction error and high value 
of R2 signifies that the developed equation (Equation 10) is highly 
accurate and reliable.

5.2. Optimization through GA
After developing reliable models, the next step was to optimize the 
reactor operating parameters to achieve maximum yield. One of 
the crucial steps in this process is to fix the search space for finding 
the optimal process conditions. To achieve this, lower and upper 
bounds (UB) of the process variables were set in consultation with 
the experimental engineers. The lower bounds and UB for the process 
variables are shown in Table 5. These bounds are necessary to ensure 
that the optimization algorithm does not explore unrealistic or 
infeasible regions in the search space.

Using the GA tool in MATLAB, the optimal experimental conditions 
were determined which resulted in a 99.6% yield of gluconic acid, as 
shown in Table 6. The significant advantage of this study is that it offers 
experimental engineers a practical approach to operate the reactor at 
optimal conditions in real-time. Due to the absence of an explainable 
model, scientists had no idea about the optimal solution, and therefore, 
experimentalists had to rely on their experience and knowledge to 

Table 5: LB and UB for optimization

Bounds x1 x2 x3

LB 100 1 10
UB 180 3 60
LB: Lower bounds, UB: Upper bounds

Table 6: Optimal solution

x1 x2 x3 Yield
162.89 1.07 60 99.6

Figure 7: Actual versus predicted plots of (a) gluconic acid yield with training data (b) gluconic acid yield with testing data.
ba
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optimize production heuristically. By running the GA with appropriate 
bounds in real-time, scientists can obtain a set of optimal operating 
conditions that they can set in the experiment, thereby minimizing the 
need for heuristic optimization (Figure 5).

6. CONCLUSION

In this study, the experimental data are utilized to build an accurate model 
for batch gluconic acid reactor through MGP. MGP provides a closed 
form model equation that is easily portable and useful in experimental 
analysis. The main contribution of this work is the development of an 
accurate and easily understandable model equation that offers valuable 
insights into the process. The created model equations are in line with 
scientific observations and adhere to the natural physics of the process. 
The use of these model equations enables the identification of the best 
solution to optimize yield, which ultimately ensures the maximization 
of profits.
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APPENDIX

Appendix Table 1: Experimental data utilized for building 
GP-based model taken from [18]

Batch 
no

Glucose concn 
(x1) (g/L)

Biomass concn 
(x2) (g/L)

DO (x3) 
(mg/L)

Gluconic acid 
yield (Y1) (%)

1 100 1 10 5.9
2 150 2 10 29.42
3 120 2 15 20.76
4 150 2.5 15 35.51
5 150 3 15 35.16
6 120 2 25 27.77
7 120 2 30 34.48
8 150 2 30 57.86
9 150 3 25 49.32
10 150 2 40 78.99
11 150 2 45 89.48
12 150 2 50 94.5
13 180 2 50 89.63
14 150 3 40 79.05
15 150 2.5 50 94.58
16 150 2.5 55 93.41
17 150 2.5 60 91.26
18 160 2.5 60 93.67
19 175 3 55 92.69
20 160 3 60 93.3
21 180 3 60 88.13
22 150 3 60 92.7
23 100 3 60 20.04
24 100 2 10 6.13
25 120 2.5 10 17.58
26 100 2 15 7.2
27 150 2 15 35.09
28 120 2 20 24.12
29 150 2 20 40.99
30 150 2.5 20 41.33
31 150 3 20 41.25
32 150 2 35 68.22
33 150 2.5 30 58.82
34 150 3 30 58.03
35 150 2.5 40 79.61
36 150 3 35 68.38
37 150 2 60 93.4
38 120 2 60 56.3
39 150 3 45 88.63
40 180 2.5 55 91.94
41 150 3 50 93.68
42 180 2.5 60 89.09
43 150 3 55 94.5
44 166 3 60 93.82
45 165 3 60 93.53
46 162 3 60 93.54


