Indian Journal of Advances in Chemical Science Volume: 6, Issue 1: , January 2018

 
             
   
   

ISSN No.: 2320-0898 (Print); 2320-0928 (Electronic)

DOI: 10.22607/IJACS.2018.601003

 

   

Research Article

 

      Optical, Electrical and Thermal Properties of SnO2 Nanoparticles doped Poly Vinyl Alcohol-Poly Vinyl Pyrrolidone Blend Polymer Electrolyte    
B Guruswamy, V. Ravindrachary*, C. Shruthi, Shreedatta Hegde, Rohan N. Sagar, S. D. Praveen
 
ABSTRACT
 

Semiconductor SnO2 nanoparticles were synthesized using standard route and the effect of these nanoparticle doping on structural, optical, electrical, and thermal properties of the poly vinyl alcohol-poly vinyl pyrrolidone (PVA-PVP) polymer blend has been investigated using various techniques. Pure and PVA-PVP/SnO2 nanocomposites films were prepared using solution casting technique. The Fourier transform infrared study shows that the SnO2 nanoparticle interacts with the OH group of PVA and carboxylic group of PVP and forms the complex within the blend matrix. The optical study shows that the absorption in the ultraviolet region and transparence in the visible region. From electrical conductivity measurements, it is clear that doping and hence the complex formation enhances the conductivity of the composite. The thermogravimetric analysis results reflect that the doping also affects the thermal properties of the composite. The scanning electron microscope images show that the nanoparticles embedded within the polymer blend matrix are of spherical in shape and the surface morphology of the composite films (roughness) increases with addition of SnO2 nanoparticles. Hence, this study shows that SnO2 nanoparticle doping forms the complex and the presence of these complexes affects the optical, thermal, electrical, and structural properties of the blend composite.

     
     

Key words: Poly vinyl alcohol-poly vinyl pyrrolidone/SnO2, Fourier transform infrared, Ultraviolet-visible, Thermogravimetric analysis, Scanning electron microscope, Conductivity.

 

 

[Download Full Article PDF]

               
     
                 
     
                 
                 
                 
               
                 
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     

Copyright © 2012 KROS Publications