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ABSTRACT
Ti-6Al-4V is difficult to machine material. It is widely used in a number of applications like aerospace industry, 
marine application, petroleum refining, surgical implantation, chemical processing, food processing, and 
electrochemical and its surface roughness is important. In this paper, surface roughness obtained from high-
speed turning of Ti-6Al-4V machined using uncoated carbide inserts have been evaluated using vibration signals. 
Vibration signals have been analyzed using time domain and time-frequency domain. Vibration amplitude 
measured in the cutting speed direction has been used in developing an artificial neural networks (ANNs) model 
in time domain. Further, in the time-frequency domain, wavelet packet transform has been used to extract features 
from the vibration signal in the cutting speed direction and has been used in developing another ANN model 
to evaluate the surface roughness in terms of Ra, which is a widely used parameter. Multilayer perceptron has 
been used for model development. Levenberg-Marquardt algorithm has been used for training the model. It has 
been found that the time-frequency domain features extracted from the vibration signals are effective in surface 
roughness evaluation, as the ANN model has given a prediction accuracy of 93% on test data.
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1. INTRODUCTION
With the wide use of high-performance CNC 
machines, high-speed machining has demonstrated its 
superior advantages compared to other manufacturing 
techniques and widely used in the aerospace industry, 
automotive industry, and precision engineering 
industry, etc. It has advantages such as higher 
material removal rates, high-quality surface finish, 
lower cost, lower cutting forces ensuing stress-free 
components, burr-free edges, as well as an increase in 
productivity [1,2]. The cutting speed employed in high-
speed machining is 2-50 times greater when compared 
to traditional machining. Titanium alloys have been 
extensively used in the aerospace, biomedical, 
marine applications, surgical implantation, chemical 
processing, food processing, electrochemical, 
automotive, and petroleum industries because of their 
good strength-to-weight ratio and superior corrosion 
resistance [3,4]. During machining of titanium alloys 
with a conventional tool, tool wears progress rapidly 
because of their low thermal conductivity and high 
chemical reactivity. Higher temperature is generated 
in the cutting zone, providing strong adhesion of 
workpiece material over the tool edge which results 
in poor machinability. The material in the vicinity 

of the machined surface undergoes excessive elastic 
deformation preventing a good surface finish [5]. 
Hence, to assess the quality of a component, the 
inspection of surface roughness of the workpiece is 
very important. Vibration is present between the tool 
and the workpiece during any machining process. In 
the case of machining titanium alloys, the vibrations 
occur mainly due to self-excited vibrations between 
the workpiece and the cutting tool. There is a need for 
vibration signal analysis during machining of difficult-
to-cut materials, such as titanium and its alloys [6,7]. 
The wavelet packet transform (WPT) provides for the 
representation of the original time domain signal in 
the time-frequency domain. When the WPT is applied 
to a signal, the output is a “tree” of decomposition 
packets, where each packet is composed of a series 
of coefficients [8]. The features, which represent 
the characteristics of the vibration signals (standard 
deviation, variance, energy, etc.), were extracted from 
the wavelet packets which contain more significant 
information. These features were used for modeling 
using the artificial neural network (ANN). Xu et al. [9] 
proposed an ANN model for predicting the drill wear 
with the help of uniquely identified features, which are 
extracted using the WPT. Pal and Chakraborty [10] 
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developed a back propagation neural network model 
for predicting the surface roughness during turning 
with a high-speed steel tool, and a comparison had 
been made between the predicted and measured 
values.

The main goal of this work is to evaluate the surface 
roughness of a machined Ti-6Al-4V surface using 
vibration signals evaluated in time domain and 
time-frequency domain wavelet transform (WT) 
techniques. Two neural network models have been 
developed based on features extracted from both the 
techniques. A comparison has been made to evaluate 
which technique is effective in the prediction of 
surface roughness parameter Ra.

2. EXPERIMENTAL DETAILS
2.1. Work Material and Tool Geometry
Figure 1 shows the experimental setup. The material 
used for experimentation was Grade 5 titanium 
alloy (Ti-6Al-4V). Samples are taken in the form of 
50 mm diameter and 200 mm length rods. The turning 
experiments were carried out on a CNC turning center 
(HMT make Stallion 100SU) with a speed range of 
100-3500 rpm. The work material has the following 
chemical compositions in percentage of weight: 
Al - 6.02%, Cr - 0.03%, Fe - 0.13%, Mn - 0.04%, 
V - 3.85%, and Ti - 89.93%. The tool insert used is 
883, an uncoated carbide insert (CNMG 12 04 08) 
with MR4 chip breaker (Seco make). The insert is 
flat faced and rhomboidal in shape with back and side 
rake angle of −6°, end cutting edge angle of 5° and 
tool nose radius of 0.8 mm. The tool holder used is 
PCLNL 2020 K12 (Seco make). The length of the tool 
overhang is 60 mm.

2.2. Cutting Conditions
Experiments have been carried out at different cutting 
speeds of 150, 175, 200 m/min, the feed rate of 0.15, 
0.2, 0.25 mm/rev and depth of cut of 0.8, 1, and 
1.2 mm. The length of each cut was 48 mm (for one 
machining pass).

2.3. Measurement of Tool Wear
Measurement of flank wear, nose wear, and crater 
wear has been done after each machining pass using 
a Mitutoyo tool maker’s microscope (TM 505/510) 
which has a magnification of ×15, with provision 
for measurement using 2 µm in horizontal and 
vertical directions with the least count of 0.005 mm. 
Experiments were carried out till the nose and flank 
wear reached 0.4 mm.

2.4. Measurement of Vibration Signals
The cutting tool vibrations during the cutting process 
have been measured online using a Model 65-10 
Isotron tri-axial accelerometer. The accelerometer 
senses the vibration signals in three different directions, 
i.e., depth of cut, speed, and feed directions (Vx, Vy 

and Vz respectively). The vibration signals were sent 
to a DNA-PPCx, power DNA cube (UEI make) at a 
sampling frequency of 10 kHz. From power DNA, the 
signals were finally sent to a laptop through ethernet 
cable and stored for further analysis using Labview 
software.

2.5. Measurement of Surface Roughness Parameter
The measurement of surface roughness was done 
after each machining pass using Taylor Hobson Taly 
Surf 50, a stylus type instrument. Surface roughness 
parameters Ra (arithmetic average surface roughness) 
has been measured considering 2.5 mm as the sampling 
length. The measurement was done at three different 
locations 120° apart on the surface of the workpiece 
and average values have been considered.

3. WT FOR VIBRATION SIGNAL ANALYSIS
Wavelet analysis is a new method for solving difficult 
problems in mathematics, physics, engineering, etc. 
The applications of WT include wave propagation, 
data compression, signal processing, image 
processing, pattern recognition, etc. [11]. The WT 
analyses the low-frequency content of a signal with 
a wide duration function and conversely analyses 
high-frequency content with a short-duration function. 
WT is a tool that decomposes a signal into different 
frequency (scale) components, and then considering 
each component by translating (positioning) it along 
the length of the signal and simultaneously matching 
it with the original signal. It gives the information 
about the signal both in frequency and time domains 
as it can be used to analyze non-stationary signals 
like those from machining. Traditionally, the WT is 
characterized as continuous, discrete, and WPT.

3.1. WPT
The WPT is a general form of wavelet decomposition 
that offers a wide range of possibilities for signal 
analysis. During wavelet decomposition, the original 
signal S is split into shifted and scaled versions of 
mother wavelet. In this work, the vibration signals 
are sampled at a sampling frequency of 10 kHz and 
for 10 s, it contains 100,000 data point. In WPT, 
both detail and approximation components are 
decomposed. The signal S is split into two frequency 
bands: An approximation A and a detail D. The first 
approximation A is then split into second approximation 
and detail as AA and AD respectively and the first 
detail D is split into second level approximation and 
detail as DA and DD, respectively. Figure 2 shows the 
third level decomposition of the signal S. This process 
can be repeated up to required n levels. The wavelet 
packet decomposition can be represented as a “tree” 
of packets in which each packet contains a different 
number of coefficients. A wavelet packet function is a 
function with three indices (j, n, k) satisfying:

Wj,k (t) = 2−j/2 Wn (2−j t−k) (1)
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Where, k and j are the translation and index of scale 
operations, respectively. Wavelet packet functions are 
defined as:

W x h(k W x kn n
k

2 2 2( ) = −( )∑ )
 (2)

W x g k W x k2n+1

k

n( ) = −( )∑2 2( )

 (3)

Where g(k) and h(k) are the high- and low-pass filters, 
Wn(x) = ϕ(x) is the scaling function and W1(x) = ψ(x) 
is the wavelet function.

3.2. Selection of Best Mother Wavelet Function
Mother wavelet is a base for the analysis of a given 
signal in WT. The selection of the mother wavelet 
is a crucial factor as it affects the result obtained by 
applying WT. Hence, one has to find out the degree of 
correlation between the given signal and the mother 
wavelet.

Rafiee and Tse [12] proposed an algorithm for 
selection of mother wavelet for faulty gearbox signal 
based on the variance values of the wavelet packets. In 
this paper, the same criteria have been used. 20 mother 
wavelets have been taken randomly from the three 
families of wavelets namely Coiflets, Daubechies and 
Symlet and the sample result for six mother wavelets 
are shown in Table 1.

The signal has been decomposed to the third level 
using WPT technique. All the signals corresponding 
to each machining pass have been decomposed. There 

are eight packets in the third level for each signal, and 
each packet contains different number of coefficients. 
The variance values of the individual packet have been 
calculated. A similar procedure has been followed 
to calculate the variance for remaining machining 
passes. The average value of the variance has been 
calculated for an individual packet for an experiment. 
Hence, finally, there will be 8 average variance values 
for one condition. Of 8 values, the sum of 4 highest 
values has been calculated for each mother wavelet, 
which has been summed up and this value is called as 
“SUMVAR” [12]. It has been found that there is no 
change in the results obtained by changing the level 
of decomposition. Out of 20 wavelet functions, the 
one which has the maximum “SUMVAR” value is 
“db-44.” Hence, “db-44” is considered as the suitable 
mother wavelet. The variance value is calculated 
using:

σ2
3
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Where, p is the number of wavelet packets, m is 
the number of coefficients in each wavelet packet, 
W(3,p) (k) is the values of the individual wavelet packet 
coefficients and W k

p3,( ) ( ) is the mean value of the 
wavelet packet coefficient.

3.3. Selection of Dominant Wavelet Packet
The need for dominant wavelet packets is significant 
since not all the packets contain desired information. 
Hence, the dominant wavelet packet has been selected 
from the packet which contains the maximum amount 
of energy. The dominant wavelet packet is then used 
for feature extraction. The packets in the third level can 
be denoted as W(3p) (p=0, 1...., 7). Of 8 packets in the 
third level, W(30) and W(36) have the maximum amount 
of energy and can be considered as the dominant 
wavelet packets. It depended on the cutting conditions 
used, for some W(3,0) and some W(3,6), have been found 
to be dominant. The energy in each wavelet packet can 
be calculated as:

Figure 1: Experimental setup for measurement of 
cutting vibrations.

Figure 2: Third level of wavelet packet decomposition 
tree for the measured vibration signals.

Table 1: “SUMVAR” values for different mother 
wavelets.

Mother wavelet SUMVAR
Db2 36,980.5
Db3 37,586.9
Db10 38,511.2
Db44 38,556.8
Sym2 36,980.1
Coif2 37,915.0
Cutting conditions considered: v=200 m/min, 
f=0.15 mm/rev and d=1.2 mm
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Where, E(3,p) is the energy of the wavelet coefficients 
for packet p in the third level, np is the number of 
wavelet coefficients in packet p, and W(3,p)(k) is the kth 
coefficient (k=1 to np).

3.4. Feature Extraction
Feature extraction is an important requirement in any 
modeling effort. Accordingly, four statistical features 
have been extracted from the dominant wavelet 
packets, and these features contain information of the 
original signal. These are mean, variance, standard 
deviation, and kurtosis [4].

4. ANN
4.1. Introduction to ANN
Neural networks are widely used artificial intelligence 
tools which are suitable for modeling in various 
applications due to their ability to learn complex 
nonlinear and multivariable relationships between 
process parameters [13]. In this study, a feed forward 
multi-layered neural network has been used to predict 
the surface roughness.

4.2. Multilayer Perceptron (MLP)
It consists of three layers: An input layer, hidden 
layers, and an output layer. The neurons present in 
the hidden and the output layer perform non-linear 
transformations of the signal. Finally, the overall 
output is obtained from the output layer by summing 
up the resulting vectors obtained from the hidden 
layers.

Each input is given to the network, and the neurons 
will generate the output. During training, the output is 
compared with the desired value using known input 
data which are fed to the network and by varying the 
weights between the neurons. The mean squared error 
(MSE) will be calculated between the predicted output 

and the desired output. The error is then minimized by 
varying the number of hidden neurons, and the network 
is trained again. The MSE can be calculated as:

MSE
Predicted value Experimental value)

=
−(



2

2  (6)

4.3. Model Development
In this study, the MLP model is developed using 
neural network toolbox in MATLAB R2014b, and the 
hidden neurons have been varied from 5 to 30 with 
an interval of 5 hidden neurons to find out the best 
prediction accuracy. The desired goal of 0.001 has 
been taken and the network training is carried out 
until the target is reached. The learning rate of 0.01 
and maximum number of epochs of 1000 has been 
taken. Altogether 289 sets of data have been collected. 
Of these, 246 data have been used for training the 
network and remaining 43 data have been used as test 
data and the prediction accuracy of the network has 
been calculated. A comparison has been made between 
the two to select which model is better in predicting 
the output (Ra). Levenberg-Marquardt (trainlm) has 
been used as a training algorithm which is available in 
the MATLAB toolbox for training the neural network 
model. Tansigmoid function has been used as a transfer 
function in the hidden and output layer neurons.

Two MLP models have been developed: One 
considering wavelet packet features (time-frequency 
domain) and other considering time domain vibration 
signals (Vy). The other parameters considered 
commonly for both the models are machining 
conditions (speed, feed, and depth of cut) and tool 
wear. The output of the model is the surface roughness 
parameter (Ra). Table 2 gives the MLP modeling 
results for both model types.

5. RESULTS AND DISCUSSION
The study evaluates the performance of MLP for 
predicting surface roughness parameter Ra. From 

Table 2: MLP model performance for prediction of Ra.

Number 
of hidden 
neurons

With time-frequency domain features (Model 1) With time domain features (Model 2)
MSE Epochs 

reached
Prediction accuracy 

(%)
MSE Epochs 

reached
Prediction accuracy 

(%)
Training 

data
Testing 

data
Training 

data
Testing 

data
5 0.0133 279 97.96 69.76 0.0167 799 97.96 83.72
10 0.00404 1000 100 72.09 0.00554 1000 99.59 88.37
15 0.00107 1000 100 88.37 0.00294 1000 100 88.37
20 0.000998 40 100 90.69 0.001 882 100 76.74
25 0.000976 24 100 88.37 0.000997 32 100 88.37
30 0.000954 19 100 93.02 0.000988 26 100 86.04
MSE=Mean squared error, MLP=Multilayer perceptron
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Table 2, it is seen that model one based on WP 
features, gives the best result for 30 neurons in 
19 epochs taking the least processing time with a 
prediction accuracy of 100% for training data and 
93.02% for test data achieving a mean square error of 
0.000954. Furthermore, it is seen that as the number 
of hidden neurons increases the performance on the 
test data improved, resulting in a larger network. For 
model 2 based on the time domain vibration signals, 
for 15 hidden neurons, the best prediction accuracy of 
100% for training data and 88.37% for test data with 
a mean square error of 0.00294, is achieved, but it 
required 1000 epochs for training.

Thus, use of WP based features resulted in higher 
prediction accuracies with smaller training error, 
but the network is large, whereas, with time domain 
signals, the network generated is compact, but resulted 
in lower prediction accuracies and higher training error.

6. CONCLUSION
This work is concerned with surface roughness 
evaluation in high-speed turning of Ti-6Al-4V using 
uncoated carbide inserts. WPT has been used to analyze 
the vibration signals. A suitable mother wavelet has 
been selected for the analysis. Four features have been 
extracted from the dominant wavelet packets. Two 
ANN models based on MLP have been developed 
using WPT based features extracted from vibration 
signals and using time domain vibration signals. It has 
been found that use of WPT for analyzing the vibration 
signals can be used in surface roughness evaluation 
with a prediction accuracy of 93% on test data. Thus, 
use of WT can be effectively carried out in analyzing 
vibration signals for surface roughness evaluation in 
high-speed turning of Ti-6Al 4V alloy.
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