Development of Amperometric Biosensor for the Detection of *Vibrio vulnificus* as Biological Weapon

Harish Kumar*, Bhawana Gupta

Department of Chemistry, Material Science & Electrochemistry Laboratory, Chaudhary Devi Lal University, Sirsa - 125 055, Haryana, India.

Received 09th December 2015; Revised 12th January 2016; Accepted 11th March 2016

ABSTRACT

The rapid, unambiguous detection and identification of biological warfare agents (BWAs) with early warning signals for detecting a possible biological attack is a major challenge for military, health and other government defense agencies. The current research is focused on the development of amperometric biosensors for the detection of BWA. For this purpose, a carbon-based (graphene) working electrode containing enzyme alkaline phosphatase, cellulose acetate and poly (vinyl pyrrolidone), ferrocene, horseradish peroxidase, aqueous potassium hydroxide was fabricated. It is then combined with Ag/AgCl reference and platinum (auxiliary) electrode to form a three-electrode based electrochemical biosensor for the electrochemical detection of *Vibrio vulnificus* as BWA in the presence and absence of Fe$_3$O$_4$ nanoparticles. Fe$_3$O$_4$ nanoparticles were synthesized by sol-gel technique and were characterized by ultraviolet-visible, Fourier transform infrared, transmission electron microscopy, and X-ray diffraction techniques. Change in current response and open circuit potential (OCP) values help in the detection of BWA in presence and absence of Fe$_3$O$_4$ nanoparticles. Effects of temperature, stirring and Fe$_3$O$_4$ nanoparticles on the BWA have also been investigated. Heating of BWA to 70.0°C for 6.0 h and the addition of Fe$_3$O$_4$ nanoparticles (50 µl/ml) at room temperature has the same effect, i.e., both results in the killing of BWA resulting in the decrease of OCP value.

Key words: Biological warfare agents, Amperometric biosensors, Sol-gel method, Fe$_3$O$_4$ nanoparticles, *Vibrio vulnificus*.

1. **INTRODUCTION**

Bioterrorism is the use of a biological weapon (bacteria, virus or spores) on human life as a weapon of mass infection. It ultimately proves more powerful than a chemical or a nuclear weapon because it works silently and its effects can be far-reaching and uncontrollable. List of pathogenic bacteria that can be considered as possible biological warfare agents (BWAs) is unending [1]. Highly dangerous include botulinum toxin, *Francisella tularensis*, *Salmonella typhimurium*, *Staphylococcus epidermis*, *Vibrio vulnificus*, and *Yersinia pestis*. Other bio-agents, like *Venezuelan equine encephalitis*, Marburg, *Ebola*, and influenza viruses are of lesser importance, despite the fact, that infections with these viruses are serious and mortality is relatively high, but due to the difficulty in their preparation, their position on the list of BWA is lower. First, evidence of bioterrorism came into existence, in 1979, when doctors presented a report of mass civilian death due to *Bacillus anthracis* pneumonia, i.e., due to inhalation of anthrax. A person exposed to *B. anthracis* died immediately. The bacilli of anthracis multiply rapidly in the body and produce a harmful toxin that stops the process of breathing.

On the other hand, *V. vulnificus* can also be used as BWA in coastal areas. *V. vulnificus* can cause disease in those who eat contaminated seafood or have an open wound that is exposed to seawater. *V. vulnificus* typically causes a severe and life-threatening illness characterized by fever and chills, decreased blood pressure (septic shock), and blood-tinged blistering skin lesions (hemorrhagic bullae). In comparison with chemical warfare agents, BWA production is much cheaper and terrorist or military attack with BWA is more effective in the range of hazard area and in the number of expected casualties. The infectious dose (ID) (amount of organism needed for infection outbreak) is different for every agent. Usually, the intake of aerosol (particles 1-10 µm) through lung is able to evoke disease with a lower ID for the given BWA.
Different types of electrochemical biosensors which are in common practice are potentiometric, conductometric, amperometric, and impedimetric [2-5]. Out of these, amperometric biosensors are more common in practice and are usually based on ion-selective electrodes. These are three-electrode based electrochemical systems which are attached with electrochemical detectors which measure the changes in ion concentration during reaction taking place in the bio-recognition layer. The advantage of amperometric biosensors over other biosensors is that they are highly sensitive, rapid, linear concentration dependence and inexpensive [6]. Amperometric biosensors aimed at microbial analysis have been reported by different researchers [7-11].

First biosensors used pH glass electrode with enzymes captured in a suitable membrane. In potentiometric immune-sensor electrochemical biosensor, enzyme-labeled antibodies are used. The most common labeling enzymes are urease, glucose oxidase or alkaline phosphatase, which are able to change either pH or ionic strength in the course of the detection [12]. Very popular semiconductor-based biosensors are light-addressable potentiometric sensors (LAPS). Due to their small size and possible multichannel arrangement, these devices seem to be very convenient for simultaneous analysis of several analytes [13]. The LAPS immune-sensors were used to detect F. tularensis [14] with a limit of detection (LOD) at 3.4×10^3 cells ml$^{-1}$ and Bacillus melitensis with LOD equal to 6×10^3 cells ml$^{-1}$ during the 1 h incubation time [15]. A better LOD was achieved for Escherichia coli DH5 a strain [16], the secondary antibody specific against E. coli labeled with urease was used and LOD of 10 cells ml$^{-1}$ for 1.5 h assay time was claimed.

In continuation to our earlier study [17], in this paper, we have focused on the fabrication of electrochemical biosensor for the detection of V. vulnificus as BWA.

2. MATERIALS AND METHODS

Samples of disease-causing bacteria, i.e., V. vulnificus (Microbial Type Culture Collection [MTCC] No. 1145) were collected from MTCC, Institute of Microbial Technology, Chandigarh.

Different steps used for the electrochemical detection of disease causing bacteria are:

i. Preparation of bacterial strain: The bacterial test organism V. vulnificus was grown in nutrient broth for 24 h at 37°C. A sodium phosphate buffer solution of pH 7.0 was prepared to hold these disease causing bacteria at a very low temperature, i.e., 4°C

ii. Synthesis of Fe$_3$O$_4$ nanoparticles and graphene: Fe$_3$O$_4$ nanoparticles were synthesized by Sol-gel technique. In this technique, a metal salt solution having ferric chloride is added dropwise in a mixture of tetraethyl orthosilicate in ethanol. Reduced graphene was synthesized by well-known Hummers method

iii. Characterization of Fe$_3$O$_4$ nanoparticles and graphene: Characterization of Fe$_3$O$_4$ nanoparticles and graphene were carried out by using ultraviolet (UV)-visible spectroscopy, Fourier transform infrared (FTIR) technique, X-ray diffraction (XRD) study and transmission electron microscopy (TEM) techniques

iv. Fabrication of working test electrode: A carbon paste (graphene) working electrode was fabricated for the electrochemical determination of biological weapon. The slurry was prepared by mixing reduced graphene, alkaline phosphatase, cellulose acetate, ferrocene, horseradish peroxidase (HRP), aqueous potassium hydroxide (KOH) and poly (vinyl pyrrolidone) (PVP). This slurry was filled in working test electrode with the help of luggin capillary. A copper wire is dipped from outside in the slurry for making electrical connections

v. Fabrication of three electrodes based electrochemical cell: Three electrodes based electrochemical cell was fabricated having three electrodes, i.e. a working test electrode (cellulose acetate, PVP bound carbon paste electrode), Ag/AgCl reference electrode and a platinum electrode acting as an auxiliary electrode for the electrochemical determination of disease causing pathogen (Figure 1)

vi. Electrochemical characterization: Three electrodes based electrochemical cell is connected to the instrument electrochemical workstation PGSTAT 128N, Metrohm Autolab attached to a PC and digital controlled water bath to maintain constant temperature. Electrochemical measurement experiments were performed on a pathogenic bacteria V. vulnificus and change in open circuit potential (OCP), current (nA) and potential values were recorded at different conditions.

![Figure 1: Electrochemical biosensor for the detection of biological warfare agent.](https://example.com/figure1.png)
For the electrochemical characterization, 3×10^7 CFU of *V. vulnificus* in 50.0 ml of phosphate buffered saline (PBS) buffer solution was used. Four different samples were prepared, i.e., pure PBS buffer solution as sample 1, PBS buffer solution with 3×10^7 CFU of *V. vulnificus* as sample 2, PBS buffer solution with Fe$_3$O$_4$ nanoparticles as sample 3 and PBS buffer solution with Fe$_3$O$_4$ nanoparticles and 3×10^7 CFU of *V. vulnificus* as sample 4.

The above samples were kept under the following two observations:

a. Heating at a constant temperature of 70°C without stirring for 6 h
b. Continuous stirring for 6 h at room temperature.

After 6.0 h, we have recorded the current and potential values with the help of three electrodes based electrochemical cell connected to the instrument PGSTAT 128N, Metrohm Autolab, Netherland.

3. RESULTS

The result of electrochemical characterization on *V. vulnificus* is recorded in the form of Tables 1 and 2 and Figures 2-8. Table 1 shows OCP values of unstirred and after 6.0 h of continuous stirring. Table 2 shows

![Figure 2: Current versus potential behavior of pure phosphate buffered saline buffer solution at 0.0 and after 6.0 h of stirring.](image1)

![Figure 3: Current versus potential behavior of phosphate buffered saline buffer solution in the presence of Fe$_3$O$_4$ nanoparticles (50.0 µl ml$^{-1}$) at 0.0 and after 6.0 h of stirring.](image2)

![Figure 4: Current versus potential behavior of phosphate buffered saline buffer solution with *Vibrio vulnificus* at and after 6.0 h of stirring.](image3)

<table>
<thead>
<tr>
<th>Samples</th>
<th>OCP values (V)</th>
<th>OCP values (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure PBS solution</td>
<td>0.524</td>
<td>0.542</td>
</tr>
<tr>
<td>PBS solution with 3.0×10^7 CFU of V. vulnificus</td>
<td>0.238</td>
<td>0.261</td>
</tr>
<tr>
<td>PBS solution with Fe$_3$O$_4$ nanoparticles</td>
<td>0.747</td>
<td>0.753</td>
</tr>
<tr>
<td>PBS solution with Fe$_3$O$_4$ nanoparticles and 3.0×10^7 CFU of V. vulnificus</td>
<td>0.226</td>
<td>0.253</td>
</tr>
</tbody>
</table>

V. vulnificus=*Vibrio vulnificus*, OCP=Open circuit potential

<table>
<thead>
<tr>
<th>Samples</th>
<th>OCP values (V)</th>
<th>OCP values (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure PBS solution</td>
<td>0.524</td>
<td>0.542</td>
</tr>
<tr>
<td>PBS solution with 3.0×10^7 CFU of V. vulnificus</td>
<td>0.240</td>
<td>0.185</td>
</tr>
<tr>
<td>PBS solution with Fe$_3$O$_4$ nanoparticles</td>
<td>0.747</td>
<td>0.753</td>
</tr>
<tr>
<td>PBS solution with Fe$_3$O$_4$ nanoparticles and 3.0×10^7 CFU of V. vulnificus</td>
<td>0.228</td>
<td>0.180</td>
</tr>
</tbody>
</table>

V. vulnificus=*Vibrio vulnificus*, OCP=Open circuit potential, PBS=Phosphate buffered saline
the OCP values of four heated samples at 0.0 and at 6.0 h.

Figure 1 shows electrochemical biosensor for the detection of BWA. Figure 2 shows current and potential values of pure PBS buffer solution at 0.0 and after 6.0 h of stirring at room temperature. Figure 3 shows current and potential behavior of PBS buffer solution in the presence of *V. vulnificus* at 0.0 and after 6.0 h of stirring at room temperature. Figure 4 shows current and potential behavior of PBS buffer solution in the presence of Fe$_3$O$_4$ nanoparticles (50.0 µl ml$^{-1}$) at 0.0 and after 6.0 h of stirring at room temperature. Figure 5 shows current and potential behavior of PBS buffer solution in the presence of *V. vulnificus* and Fe$_3$O$_4$ nanoparticles (50.0 µl ml$^{-1}$) at 0.0 and after 6.0 h of stirring at room temperature.

Figure 6 shows current and potential values of pure PBS buffer solution at 0.0 and after 6.0 h of heating at 70°C. Figure 7 shows current and potential behavior of PBS buffer solution in the presence of Fe$_3$O$_4$ nanoparticles (50.0 µl ml$^{-1}$) at 0.0 and after 6.0 h of heating at 70°C. Figure 8 shows current and potential behavior of PBS buffer solution in the presence of Fe$_3$O$_4$ nanoparticles (50.0 µl ml$^{-1}$) at 0.0 and after 6.0 h of heating at 70°C.

Figure 9 shows current and potential behavior of PBS buffer solution with *V. vulnificus* at and after 6.0 h of heating.

Figure 10 shows UV-visible spectra of Fe$_3$O$_4$ metal nanoparticles synthesized by sol-gel technique as a function of wavelength. Figure 11 shows FTIR spectra (Thermo-USA, FTIR-3800) in the wavelength range of 400-4000 cm$^{-1}$ of Fe$_3$O$_4$ metal nanoparticles synthesized by sol-gel technique. Figure 12 shows XRD pattern of Fe$_3$O$_4$ metal nanoparticles synthesized by sol-gel technique. Figure 13 shows TEM images.
4. DISCUSSION
The UV absorption band of Fe nanoparticles (Figure 10) was observed in the wavelength range of 330-450.0 nm which may be due to the absorption and scattering of light by iron nanoparticles [18,19]. The low absorption band at a wavelength of 410.0 nm may be due to the formation of least agglomerated Fe\textsubscript{3}O\textsubscript{4} nanoparticles. Further, no additional peaks were observed corresponding to alcohol which indicates that the iron nanoparticles were not encapsulated by ethanol, and they only acted as a soft template.

An absorption peak at 3440 cm-1 in the FTIR spectrum of iron oxide nanoparticles (Figure 11), (characteristic peak of OH stretching vibration) confirms the presence of some amount of ferric hydroxide in Fe\textsubscript{3}O\textsubscript{4} [20,21]. The other two distinct peaks at 565 and 421.0 cm-1 are due to the vibrations of Fe2+–O2− and Fe3+–O2− respectively [22]. Another peak (sharp and high intensity) at 565 cm-1 indicates the presence of high degree of crystallinity in the Fe\textsubscript{3}O\textsubscript{4} nanoparticles. The characteristic absorption bands at 565 and 421 cm-1 confirm the presence of spinel structure in Fe\textsubscript{3}O\textsubscript{4} nanoparticles. FTIR spectroscopic technique was carried out to ascertain the purity and nature of ferrite metal nanoparticles synthesized by sol-gel technique.

The reflection peak at 2θ=35.60° confirm spinel phase of ferrite (Fe\textsubscript{3}O\textsubscript{4}) nanoparticles (JCPDS, PDF cards 3-864 and 22-1086) (Figure 12). The diffractions peaks of the ferrite nanoparticles were observed at 2θ=30.18° (d=0.297 nm), 35.61° (d=0.253 nm), 43.27° (d=0.209 nm), 53.56° (d=0.171 nm), and 57.11° (d=0.162 nm) [23]. The peaks at an angle of 30.18° (220), 35.61° (311), 43.27° (400), 53.56° (422), 57.11° (511), and 62.65° (440) correspond to Fe\textsubscript{3}O\textsubscript{4}. The average particle size of ferrite nanoparticles has been calculated using well-known Scherrer equation [24] and was found to be 31.0 nm. Further, diffraction peak broadening confirms the formation of the ultrafine ferrite nanoparticles.

Structural and optical properties of Fe\textsubscript{3}O\textsubscript{4} metal nanoparticles were determined by using TEM of made Morgagni 268 D, FEI Philips at a resolution of 2 A° from Electron Microscope Facility (SAIF), AIIMS, New Delhi (Figure 13a). The TEM images reveal self-
organized network like morphology of ferrite (Fe₃O₄) nanoparticles which are almost identical in shape and appear to be uniformly dispersed. The average particles size is in close agreement with both the technique, i.e., as observed in TEM and the crystallite size calculated by the Scherrer equation (~31.0 nm) with the help of XRD technique. Further, the TEM diffraction ring (Figure 13b) confirms that the ferrite nanoparticles are in a well crystalline state [25].

The purpose of addition of HRP in the slurry of working electrode is because HRP enhance the intensity of weak electrochemical signal. Ferrocene act as stimulator. Graphene was added into the slurry of working electrode to increase its conductivity and surface area of the electrode.

From the Tables 1 and 2, it is observed that OCP value of PBS buffer solution decreases on addition of 3.0 × 10⁷ CFU of V. vulnificus. OCP value of PBS buffer solution increases on addition of Fe₃O₄ nanoparticles. OCP value of V. vulnificus decreases (0.238-0.226 V) on addition of Fe₃O₄ nanoparticles (50 µl ml⁻¹). It means that Fe₃O₄ nanoparticles are showing antibacterial properties and makes V. vulnificus as inactive. This may be due to the penetration of V. vulnificus deep inside the bacteria through bacterial cell wall and thus making it inactive.

Heating of samples to 70.0°C leads to decrease in the OCP value from 0.240 to 0.185 V with 3.0 × 10⁷ CFU of V. vulnificus and from 0.228 to 0.180 V with 3.0 × 10⁷ CFU of V. vulnificus and Fe₃O₄ nanoparticles (50 µl ml⁻¹). Heating of samples to 70.0°C makes bacterial cell in active just like addition of nanoparticles which lowers its OCP value.

Thus, it is concluded that heating of samples to 70.0°C for 6.0 h (Table 2) and addition of Fe₃O₄ nanoparticles (50 µl ml⁻¹) at room temperature (Table 1) has the same effect, i.e. both results in decrease in OCP value of PBS buffer solution with 3.0 × 10⁷ CFU of V. vulnificus. Hence, it is concluded that an OCP value of 0.240 V in phosphate buffer solution confirms the presence of V. vulnificus pathogenic bacteria. Heating of the samples up to 70.0°C for a definite period of time leads to decrease in OCP value. The addition of Fe₃O₄ nanoparticles also leads to decrease in OCP value, i.e. heating and additions of Fe₃O₄ nanoparticles have same effect on V. vulnificus which lowers its OCP value.

It is observed from Figure 2 that the current and potential behavior of pure PBS solution is different at 0.0 and 6.0 h of continuous stirring. The current value decreases with increase in potential value after 6 h of continuous stirring. It is also observed from Figure 3 that current value decreases with increase in the potential of PBS buffer solution in the presence of Fe₃O₄ nanoparticles (50 µl ml⁻¹) after 6.0 h of continuous stirring. Similar types of results were observed in the case of samples containing V. vulnificus (Figure 4). The current and potential behavior of samples containing both Fe₃O₄ nanoparticles (50.0 µl ml⁻¹) and 3.0 × 10⁷ CFU of V. vulnificus also shows decrease in current values after 6.0 h of continuous stirring (Figure 5).

It is observed from the Figure 6 that the value of current shows non-linear behavior with increase in potential value at initial time and after 6.0 h of continuous stirring. It is observed from the Figure 7 that the value of current first decrease and then increase and then becomes almost constant with increase in potential value in the presence of Fe₃O₄ nanoparticles at initial time. Current values show non-linear behavior after 6.0 h of heating at 70.0°C. Figure 8 shows that value of current initially decreases and then increase and thereafter remains almost constant with increase in potential value in the presence of 3.0 × 10⁷ CFU of Klebsiella pneumonia in PBS solution at initial time. Current value decreases slightly after 6 h of heating.

5. CONCLUSION
Carbon (graphene) based working electrode having alkaline phosphatase, cellulose acetate, ferrocene, HRP, aqueous KOH and PVP was fabricated which when combined with Ag/AgCl reference and a platinum auxiliary electrode to form a three-electrode based electrochemical cell for the electrochemical detection of V. vulnificus as BWA. Fe₃O₄ nanoparticles were synthesized by sol-gel method. Characterization of Fe₃O₄ nanoparticles was carried out by using UV-visible, FTIR, XRD and TEM techniques. An UV-visible absorption band at the wavelength of 410.0 nm and a sharp absorption band at 600.0 cm⁻¹ in FTIR spectra confirm the formation of ferrite nanoparticles. Heating of samples to 70.0°C for 6.0 h and addition of Fe₃O₄ nanoparticles (50.0 µl ml⁻¹) at room temperature has the same effect, i.e. both results in decrease in OCP value. The value of both current and potential decreases on addition of Fe₃O₄ nanoparticles (50.0 µl ml⁻¹). Continuous stirring of the samples of PBS and V. vulnificus in the presence of Fe₃O₄ nanoparticles for a definite time leads to decrease in current value. This may be due to escaping of Fe₃O₄ nanoparticles from bacterial cell thus making V. vulnificus again in active form. A constant OCP value of 0.240 V in phosphate buffer solution indicates the presence of V. vulnificus pathogenic bacteria in the sample.

6. ACKNOWLEDGMENT
We are very thankful to DRDO, New Delhi for providing us financial support for this research work.

7. REFERENCES
NBC Defensive Operations, Part II, Biological, Washington, DC: NATO AMedP-6(B).

Bibliographical Sketch

Dr. Harish Kumar is Assistant Professor in the Department of Chemistry, Chaudhary Devi Lal University, Sirsa (Haryana) 125 055, India. He has published more than 58 papers and three books on Physical Chemistry. He is member of editorial board different scientific journals. His main sphere of interest is in electrochemistry and material science. He may be contacted at harimoudgil1@gmail.com.

Bhawana is a Project Fellow of DRDO in Department of Chemistry, Ch. Devi Lal University, Sirsa (Haryana) 125055, India, under the project entitled “Electrochemical Biosensors for the Detection of Biological Weapon.” She completed her Master degree in Chemistry from Chaudhary Devi Lal University, Sirsa (Haryana) and Bachelor degree from Govt. National P.G. College, Sirsa (Haryana). She completed her Bachelor of Education from J. C. D. (PG) College of Education, Sirsa (Haryana). She has attended many Conferences, Seminars, and Workshops. She has won many prizes in University Youth Festivals and other cultural and literary events. She may be contacted at sejalsingla172@gmail.com.